4. Игра в доверие

We use cookies. Read the Privacy and Cookie Policy

Из всех широких классов стратегических игр, представленных в главе 4, мы с эволюционной точки зрения рассмотрели дилемму заключенных и игру в труса. Осталась только игра в доверие. В главе 4 мы проиллюстрировали этот тип игры на примере двух студентов, Гарри и Салли, которые решают, где встретиться, чтобы выпить кофе. В эволюционном контексте каждому игроку свойственна врожденная симпатия либо к Starbucks, либо к Local Latte, а в состав популяции входит определенное число игроков каждого типа. Мы будем исходить из того, что пары игроков, которые мы разделяем на генетические категории мужчин и женщин, каждый день выбираются случайным образом для участия в данной игре. Обозначим стратегии как S (Starbucks) и L (Local Latte). На рис. 12.8 представлена таблица выигрышей при случайном отборе пар игроков; выигрыши те же, что и в таблице на рис. 4.11.

Рис. 12.8. Таблица выигрышей игры в доверие

Если бы это была игра с участием игроков, делающих рациональный выбор, в ней было бы два равновесия в чистых стратегиях: (S, S) и (L, L), причем второе лучше для обоих игроков. Если игроки общаются и координируют свои действия в явной форме, им не составит труда достичь этого равновесия. Однако если они делают выбор независимо друг от друга, им необходимо скоординировать действия посредством сходимости ожиданий, другими словами, отыскав фокальную точку.

В рациональной игре есть третье равновесие — в смешанных стратегиях, которое мы нашли в главе 7. В нем каждый игрок выбирает Starbucks с вероятностью 2/3 и Local Latte с вероятностью 1/3; ожидаемый выигрыш каждого игрока составляет 2/3. Как было показано в главе 7, этот выигрыш хуже выигрыша в случае менее привлекательного равновесия в чистых стратегиях (S, S), поскольку независимое смешивание стратегий зачастую приводит игроков к противоречивому или плохому выбору. Здесь же вероятность неблагоприятного исхода (выигрыш 0) равна 4/9: два игрока отправляются в разные места почти в половине случаев.

Что происходит в эволюционной игре? Каждый член большой популяции запрограммирован на выбор либо S, либо L. Произвольно отобранным парам таких игроков дается задание попытаться встретиться. Предположим, x — это доля в популяции игроков типа S, а (1 — x) — доля игроков типа L. Тогда уровень приспособленности определенного игрока типа S (его ожидаемый выигрыш от случайной встречи такого рода) составляет x ? 1 + (1 — x) ? 0 = x. Аналогично, уровень приспособленности каждого игрока типа L равен x ? 0 + (1 — x) ? 2 = 2(1 — x). Следовательно, уровень приспособленности типа S выше при х > 2(1 — x) или x > 2/3, а типа L — при x < 2/3. В равновесной точке x = 2/3 оба типа в равной степени приспособлены.

Как и в игре в труса, те же значения вероятности, которые относятся к равновесию в смешанных стратегиях, полученному в результате рационального выбора, появляются и при ведении игры по эволюционным правилам в виде соотношения типов в популяции при полиморфном равновесии. Однако теперь это смешанное равновесие неустойчиво. Малейшее случайное отклонение доли х от равновесной точки 2/3 запустит кумулятивный процесс, который сместит комбинацию типов в популяции далеко от равновесной точки. Если значение x превысит 2/3, уровень приспособленности игроков типа S повысится и он станет еще быстрее расти количественно, еще больше увеличивая значение x. Если значение x окажется меньше 2/3, уровень приспособленности игроков типа L повысится и он станет еще быстрее расти количественно, еще больше снижая значение x. В итоге значение x либо повысится до 1, либо упадет до 0, в зависимости от вида отклонения. Особенность ситуации состоит в том, что в игре в труса каждый тип был более приспособленным при меньшей доле в популяции, поэтому соотношение типов в ней стремилось от экстремальных значений в равновесной точке, попадающей в средний диапазон. Напротив, в игре в доверие уровень приспособленности каждого типа выше при большем количестве членов соответствующего типа в популяции; риск не встретиться с другим игроком снижается по мере увеличения доли игроков того же типа, поэтому соотношение типов в популяции стремится к экстремальным значениям.

На рис. 12.9, очень похожем на рис. 12.7, представлены графики уровня приспособленности и равновесия в игре в доверие. Две линии отображают приспособленность двух типов в зависимости от их соотношения в популяции. Пересечение линий образует равновесную точку. Единственное отличие — при удалении от равновесной точки более многочисленный тип становится более приспособленным, тогда как на рис. 12.7 это был менее многочисленный тип.

Рис. 12.9. Графики уровня приспособленности, а также равновесия в игре в доверие

Поскольку каждый тип менее приспособлен при небольшой численности, только две крайние мономорфные конфигурации популяции могут находиться в эволюционно устойчивом состоянии. Легко убедиться, что оба исхода — это эволюционно устойчивые стратегии согласно статическому критерию: захват другого типа небольшой популяцией мутантов сойдет на нет, потому что у немногочисленных мутантов более низкий уровень приспособленности. Таким образом, в играх в доверие, или координационных играх, в отличие от игры в труса, эволюционный процесс не сохраняет неблагоприятное равновесие, при котором существует положительная вероятность выбора игроками конфликтующих стратегий. Тем не менее эта динамика не гарантирует сходимости к более благоприятному из двух равновесий, если игра начинается с произвольной исходной комбинации фенотипов, — к чему придет популяция, зависит от того, с чего она начнет.