1. Кооперативное решение Нэша

We use cookies. Read the Privacy and Cookie Policy

В этом разделе мы проанализируем подход Нэша к переговорам как к кооперативной игре. Сначала представим эту идею в виде простого числового примера, а затем дадим ее более общее алгебраическое описание[301].

А. Числовой пример

Представьте двух предпринимателей из Кремниевой долины, Энди и Билла. Энди выпускает микросхему, которую может продавать любому производителю компьютеров по 900 долларов, а Билл разработал пакет программ, который может стоить 100 долларов. Они знакомятся и, немного пообщавшись, понимают, что их продукты идеально подходят друг к другу и что после незначительной доработки они могут выпускать комплексную систему аппаратного и программного обеспечения стоимостью 3000 долларов на каждый компьютер. Следовательно, объединившись, Энди и Билл могут создать дополнительную стоимость в размере 2000 долларов на единицу продукции и рассчитывают на продажу миллионов таких единиц в год. Единственное препятствие на пути к богатству — как его поделить? 3000 долларов — доход от каждой единицы, какую их часть должен получить Энди и какую Билл?

Главный аргумент Билла, что без его программного обеспечения микросхемы Энди — не более чем груда металла и песка, поэтому Энди должен получить 900 долларов, а сам Билл 2100 долларов. Энди парирует, что без его аппаратного обеспечения программы Билла — не более чем символы на бумаге или магнитные сигналы на диске, поэтому Билл должен получить всего 100 долларов, а остальные 2900 долларов — он, Энди.

Наблюдая за этим спором, вы могли бы посоветовать им разделить разницу между собой. Однако это не совсем точный рецепт достижения соглашения. Билл мог бы предложить Энди поровну разделить прибыль с каждой единицы продукции. При такой схеме каждый получит прибыль в размере 1000 долларов, то есть 1100 долларов дохода достанется Биллу и 1900 долларов Энди. Встречное предложение Энди может состоять в том, что каждый должен получить равный процент прибыли на вклад в совместное предприятие. Тогда Энди получит 2700 долларов, а Билл 300 долларов.

Если Энди и Билл ведут переговоры непосредственно между собой, окончательное соглашение зависит от настойчивости или терпения обоих. Если же они попытаются прибегнуть к помощи третейского судьи, то его решение зависит от понимания относительной стоимости аппаратного и программного обеспечения, а также от навыков риторики, которые используют два принципала в процессе представления ему своих аргументов. Для определенности давайте предположим, что третейский судья предлагает разделить прибыль в соотношении 4:1 в пользу Энди, то есть Энди должен получить четыре пятых от излишка, тогда как Билл одну пятую, или Энди должен получить в четыре раза больше, чем Билл. Каким будет фактическое разделение дохода по такой схеме? Допустим, общий доход Энди x, а Билла — y; тогда прибыль Энди составит (x — 900), а Билла — (y — 100). Решение третейского судьи подразумевает, что прибыль Энди должна в четыре раза превышать прибыль Билла; следовательно, x — 900 = 4(y — 100), или x = 4y + 500. Общий доход обоих предпринимателей равен 3000 долларов, стало быть, должно выполняться равенство x + y = 3000, или x = 3000 — y. В таком случае x = 4y + 500 = 3000 — y, или 5y = 2500, или y = 500, а значит, x = 2500. Такой механизм разделения прибыли обеспечивает Энди 2500 — 900 = 1600 долларов, а Биллу 500–100 = 400 долларов, что равносильно разделению прибыли в соотношении 4:1 в пользу Энди, о котором говорит третейский судья.

На основании этих элементарных данных мы выведем алгебраическую формулу, которую вы найдете весьма полезной во многих практических приложениях, а затем перейдем к анализу других факторов, от которых зависят пропорции разделения прибыли в переговорной игре.

Б. Общая теория

Предположим, два участника переговоров, A и Б, пытаются разделить общую величину v, которую они могут получить, только если договорятся о конкретном способе разделения. Если соглашение не будет достигнуто, А получит a, а Б получит b, причем каждый будет действовать в одиночку или каким-то иным способом вне пределов их отношений. Назовем эти показатели страховочными выигрышами, или, используя терминологию Гарвардского переговорного проекта, их лучшими альтернативами обсуждаемому соглашению (best alternative to a negotiated agreement, BATNA)[302]. Зачастую значения a и b равны нулю, но в более общем плане будем исходить из того, что a + b < v, то есть данное соглашение обеспечивает положительный излишек (v — a — b); в противном случае весь переговорный процесс оказался бы бессмысленным, поскольку каждая сторона просто воспользовалась бы внешней возможностью и получила бы свой BATNA.

Рассмотрим следующее правило: каждому игроку необходимо предоставить его BATNA и долю излишка. Допустим, для А доля излишка равна h, а для Б — k, причем h + k = 1. Выразив x в виде суммы, которую получит в итоге А, а y — в виде суммы, которую получит в итоге Б, имеем

x = a + h(v — a — b) = a(1 — h) + h(v — b), x — a = h(v — a — b),

а также

y = b + k(v — a — b) = b(1 — k) + k(v — a), y — b = k(v — a — b).

Мы называем эти выражения формулами Нэша. Еще один способ интерпретировать их сводится к такому утверждению: излишек (v — a — b) подлежит разделению между двумя участниками переговоров в соотношении h к k, или

или в виде уравнения

Для того чтобы охватить весь излишек, x и y должны также удовлетворять уравнению x + y = v. Формулы Нэша для x и y — это и есть решения системы последних двух уравнений.

Геометрическое представление кооперативного решения Нэша приведено на рис. 17.1. Страховочный выигрыш, или BATNA, находится в точке P с координатами (a, b). Все точки (x, y), которые делят прибыль между двумя игроками в соотношении h к k, лежат на прямой линии, которая проходит через точку P и имеет наклон k/h; эта наклонная прямая представляет собой график функции y = b + (k/h)(x — a), которую мы вывели ранее. Все точки (x, y), охватывающие весь излишек, лежат на прямой, проходящей через точки (v, 0) и (0, v); эта прямая соответствует второму уравнению, полученному выше, а именно x + y = v. Решение Нэша находится в точке пересечения этих линий, то есть в точке Q. Координаты этой точки — выигрыши сторон после достижения соглашения.

Рис. 17.1. Решение Нэша для переговорной игры в простейшем виде

Формула Нэша ничего не говорит о том, как может быть получено это решение. И такая расплывчатость — ее преимущество, поскольку ее можно использовать для описания результатов множества разных теорий с учетом множества разных подходов.

На простейшем уровне формулу Нэша можно рассматривать как краткое описание результата переговорного процесса, который мы не оговаривали в деталях. Тогда h и k могут обозначать относительную силу переговорных позиций сторон. Такое сокращенное описание представляет собой компромисс; более полная теория должна объяснять, откуда берется сила переговорных позиций и почему у одной стороны она может быть больше, чем у другой. Мы сделаем это в конкретном контексте ниже в данной главе, а пока эта формула дает нам хороший инструмент, отображая все без исключения источники силы переговорных позиций в показателях h и k.

Сам Нэш придерживался иного подхода, отличающегося от подхода к теории игр, используемого нами до сих пор в данной книге. Поэтому его подход заслуживает более тщательного объяснения. Во всех уже изученных нами играх участники выбирали и разыгрывали свои стратегии отдельно друг от друга. Мы искали равновесия, в которых стратегия каждого игрока отвечала его собственным интересам с учетом стратегий других игроков. Порой такие исходы были весьма неблагоприятны для некоторых, а то и всех участников игры, чему наглядный пример — дилемма заключенных. Тогда у игроков была возможность собраться вместе и договориться следовать определенной стратегии. Но в нашей системе у них не было никакого способа проконтролировать выполнение достигнутого соглашения. Договорившись, игроки расходились, а когда наступала их очередь действовать, они делали то, что максимально отвечало их собственным интересам. Под влиянием столь разрозненных стремлений игроки нарушали соглашение о совместных действиях. Правда, в ходе анализа повторяющихся игр в главе 10 мы обнаружили, что скрытая угроза разрыва длительных отношений способна поддерживать выполнение договоренности, а в главе 8 допустили возможность коммуникации посредством подачи сигналов. Однако значение имело именно индивидуальное действие, а любая взаимная выгода достигалась только тогда, когда ей не грозило пасть жертвой эгоистичности разрозненных действий отдельных игроков. В главе 2 мы назвали такой подход к теории игр некооперативным, подчеркнув, что этот термин указывает на способ выполнения действий, а не на то, станет ли их результат приемлемым для всех игроков. Опять же, важно то, что любое совместное благо должно представлять равновесный результат разрозненных действий в подобных играх.

Но что если совместные действия все же возможны? Например, участники игры могут совершить их сразу же после достижения договоренностей, в присутствии друг друга. Или могут делегировать реализацию соглашения нейтральной третьей стороне или посреднику. Другими словами, игра может быть кооперативной (снова в смысле совместных действий). Нэш моделировал переговорный процесс именно в виде кооперативной игры.

Рассуждения коллектива, планирующего реализовать совместное соглашение посредством совместных действий, могут существенно отличаться от рассуждений совокупности отдельных людей, которые знают, что взаимодействуют стратегически, но совершают при этом некооперативные действия. В то время как члены второй группы будут думать в категориях равновесия, а затем либо радоваться, либо огорчаться, в зависимости от удовлетворенности полученными результатами, члены первой группы сначала подумают о том, какой результат будет приемлемым, а затем посмотрят, как его достичь. Иными словами, теория определяет исход кооперативной игры с точки зрения ряда общих принципов или свойств, которые считает разумными ее автор.

Нэш сформулировал ряд таких принципов для переговоров и доказал, что они подразумевают единственный исход. Вот их примерное описание: 1) этот исход должен быть инвариантным, если шкала измерения выигрышей меняется линейно; 2) он должен быть эффективным; 3) на него не повлияет сокращение множества возможных вариантов путем удаления тех, которые в любом случае не будут выбраны.

Первый принцип согласуется с теорией ожидаемой полезности, которую мы вкратце рассматривали в приложении к главе 8. Там мы увидели, что нелинейная шкала выигрышей отображает изменения отношения игрока к риску и реальное изменение линии поведения: вогнутая шкала подразумевает нерасположенность к риску, а выгнутая — склонность к риску. Линейная шкала, будучи промежуточными вариантом, отображает нейтральность к риску. Следовательно, линейное изменение шкалы выигрышей не влияет на оценку ожидаемых выигрышей и не сказывается на полученных результатах.

Второй принцип означает, что ни одна часть имеющейся взаимной выгоды не должна оставаться неиспользованной. В нашем простом примере, где игроки А и Б делят общую величину v, это означало бы, что x и y должны составлять в сумме всю имеющуюся величину v, но ни в коем случае не меньше v, то есть решение должно лежать на линии x + y = v, представленной на рис. 17.1. В более общем случае полный набор логически возможных соглашений в переговорной игре, отображенных в виде графика на рис. 17.1, будет ограничен сверху и справа подмножеством соглашений, которые не оставляют неиспользованной ни одну долю взаимной выгоды. Это подмножество не обязательно должно располагаться на прямой, такой как x + y = v (или y = v — x); оно может находиться на любой линии в форме y = f(x).

На рис. 17.2 все точки над и под (то есть к «югу» и к «западу») кривой y = f(x), представленной в виде жирной серой линии, образуют полное множество возможных исходов. Сама кривая состоит из эффективных исходов: не существует возможных исходов, которые включали бы больше значений x и y, чем исходы на кривой y = f(x), а значит, неиспользованной взаимной выгоды нет. В связи с этим мы называем кривую y = f(x) эффективной границей в переговорной задаче.

Рис. 17.2. Общий вид решения Нэша для переговорной игры

Мы можем проиллюстрировать изогнутую эффективную границу на примере рационального распределения риска из раздела 1.А главы 8. Два фермера, функция полезности каждого из которых выражена в виде квадратного корня, сталкиваются с риском того, что в равной степени вероятные благоприятные или неблагоприятные условия обеспечат им либо 160 000, либо 40 000 долларов дохода, что даст каждому из них ожидаемую полезность в размере

Однако между рисками этих двух фермеров присутствует идеальная отрицательная корреляция. У одного складываются хорошие погодные условия, тогда как у другого плохие, а значит, их совокупный доход составит 200 000 долларов независимо от того, какому фермеру с погодой повезет. Если фермеры договорятся, что первый из них получит долю совокупного дохода z, а второй — оставшийся доход (200 000 — z), то их значения полезности x и y соответственно составят

Стало быть, мы можем описать множество возможных исходов разделения риска с помощью уравнения

x2 + y2 = z + (200 000 — z) = 200 000.

Это уравнение описывает четверть окружности в положительном квадранте и отображает эффективную границу переговорной задачи двух фермеров. Показатель BATNA каждого фермера — это ожидаемая полезность 300, которую он будет иметь, если фермеры не достигнут соглашения по разделению риска. Подставив данное значение в уравнение, получаем 3002 + 3002 = 90 000 + 90 000 = 180 000 < 200 000. Следовательно, точка, соответствующая значению BATNA, находится с внутренней стороны четверти окружности эффективной границы.

Третий принцип также весьма интересен. Если исход, который участник переговоров в любом случае бы не выбрал, исключается из рассмотрения, тогда какое он имеет значение? Это предположение тесно связано с условием независимости от посторонних альтернатив в теореме о невозможности Эрроу, о которой шла речь в разделе 3 главы 15, но нам придется оставить эту связь для более сложных работ по данной теме.

Нэш доказал, что кооперативный исход, удовлетворяющий всем трем предположениям, можно описать в виде математической задачи максимизации: выберите такие значения x и y, которые обеспечат максимум функции (x — a)h(y — b)k при условии y = f(x).

Здесь x и y — исходы, a и b — страховочные выигрыши, а h и k — два возможных числа, составляющих в сумме 1, которые аналогичны силе переговорных позиций в формуле Нэша. Значения h и k не могут быть определены только посредством трех исходных предположений Нэша; следовательно, они оставляют некоторую степень свободы в теории и в результатах. В действительности Нэш ввел в эту задачу четвертое предположение — о симметрии между двумя игроками. Оно привело к результату h = k = 1/2 и позволило найти единственное решение. Мы дали более общую формулировку, впоследствии получившую широкое распространение в теории игр и экономике.

На рис. 17.2 дано геометрическое представление цели максимизации. Черные линии, обозначенные как c1, c2 и c3 — это изолинии, или линии уровня максимизируемой функции; на каждой такой кривой значение (x — a)h(y — b)k представляет собой постоянную величину и составляет c1, c2 и c3 (где c1 < c2c3), как показано выше. Все пространство можно заполнить такими линиями, у каждой из которых свое значение постоянной, а у линий, расположенных в направлении «северо-востока», значения постоянных выше.

Очевидно, что самое высокое из возможных значение данной функции находится в точке касания Q линии эффективной границы и одной из изолиний[303]. Местоположение точки Q определяется тем свойством, что линия уровня, проходящая через Q, — касательная к линии эффективной границы. Точка касания — это общепринятый способ представления кооперативного решения Нэша в геометрическом виде[304].

В примере на рис. 17.1 также можно вывести решение Нэша математически; для этого понадобится дифференциальное исчисление, но цели важнее способов их достижения (во всяком случае, в контексте изучения стратегических игр). Для того чтобы найти это решение, целесообразно записать X = x — a и Y = y — b. Таким образом, X — это величина излишка, получаемого игроком А, а Y — величина излишка игрока Б. Условие эффективности исхода гарантирует, что X + Y = x + y — a — b = v — a — b, что и представлет собой общую величину излишка, которую мы обозначим символом S. Тогда Y = S — X, а также

(x — a)h(y — b)k = XhYk = Xh(S — X)k.

В решении Нэша X принимает значение, максимизирующее эту функцию. Элементарное исчисление говорит о том, что для определения значения X необходимо взять производную этого выражения по X и приравнять к нулю. Воспользовавшись правилами исчисления для поиска производных степеней X и произведения двух функций X, получим

hXh — 1(S — X)k — Xhk(S — X)k — 1 = 0.

Исключив общий множитель Xh — 1(S — X)k  1, будем иметь

h(S — X) — kX = 0,

hY — kX = 0,

kX = hY

И наконец, выразив это уравнение через исходные переменные x и y, получим (x — a)/h = (y — b)/k, а это и есть формула Нэша. Вывод: три условия Нэша приводят к формуле, которую мы изначально обозначили как простой способ разделения излишка в процессе переговоров.

Эти три принципа, или заданные свойства, определяющие решение Нэша для кооперативных переговоров, — просты и даже привлекательны. Но при отсутствии эффективного способа убедиться, что стороны переговоров предпримут действия, предусмотренные в соглашении, они могут оказаться бесполезны. Игрок, которому выгоднее самостоятельно разрабатывать стратегию, чем использовать решение Нэша, может их просто проигнорировать. Если третейский судья может принудить выполнить решение, то игрок может отказаться от его услуг. Следовательно, кооперативное решение Нэша будет более убедительным при наличии альтернативной интерпретации в виде равновесия Нэша в некооперативной игре с двумя участниками переговоров. Это действительно осуществимо, и мы рассмотрим такой пример в разделе 5.