3. Игра в труса

We use cookies. Read the Privacy and Cookie Policy

Помните юношей 1950-х годов, которые мчатся навстречу друг другу в автомобилях и ждут, кто свернет первым, чтобы избежать столкновения? Теперь предположим, что у них нет выбора: каждый генетически запрограммирован быть либо «тюфяком» (всегда сворачивать в сторону), либо «мачо» (всегда ехать прямо). Популяция состоит из комбинации двух типов. Каждую неделю случайным образом выбираются пары для участия в игре. На рис. 12.6 представлена таблица выигрышей каждого из двух игроков — скажем, А и Б. (Значения в таблице те же, что и в таблице на рис. 4.13 из главы 4.)

Рис. 12.6. Таблица выигрышей для игры в труса

Какие результаты получат два типа игроков? Ответ зависит от исходного соотношения типов в популяции. Если она почти полностью состоит из «тюфяков», то мутант типа «мачо» будет выигрывать и в основном получать выигрыш 1, тогда как все «тюфяки» в противостоянии с себе подобными получат большей частью нули. Но если популяция почти полностью состоит из «мачо», то мутант типа «тюфяк» получит ?1, что хоть и выглядит плохо, но все же лучше выигрыша ?2, который получат все «мачо». Можно представить эту ситуацию с точки зрения биологического контекста и сексизма 1950-х годов: в популяции «тюфяков» новичок «мачо» покажет всем, что они трусы, и тем самым произведет впечатление на девушек. Но если в популяции преимущественно «мачо», то в большинстве случаев они окажутся в больнице, а девушкам придется искать немногочисленных здоровых «тюфяков».

Иными словами, уровень приспособленности каждого типа выше, когда он встречается в популяции относительно редко. Следовательно, каждый тип может успешно захватить популяцию, состоящую из представителей другого типа. В таком случае следует ожидать, что оба типа в популяции находятся в равновесии; то есть эволюционно устойчивая стратегия должна представлять собой комбинацию типов, или быть полиморфной.

Для того чтобы определить соотношение «тюфяков» и «мачо» в такой эволюционно устойчивой стратегии, вычислим уровень приспособленности каждого типа в общей смешанной популяции. Пусть x — это доля «мачо», а (1 — x) — доля «тюфяков». Один «тюфяк» встречается с другим «тюфяком» и получает 0 в (1 — x) случаях, а при встрече с «мачо» — ?1 в x случаев. Следовательно, уровень приспособленности «тюфяка» составляет 0 ? (1 — x) — 1 ? x = —x. Точно так же уровень приспособленности «мачо» равен 1 ? (1 — x) — 2x = 1–3x. Уровень приспособленности типа «мачо» выше при выполнении условия

1 — 3x > —x,

2x < 1,

x < 1/2.

Если в популяции меньше половины «мачо», то этот тип будет более приспособленным, а его доля в популяции увеличится. Напротив, если в популяции больше половины «мачо», тогда тип «тюфяк» будет более приспособленным, а доля «мачо» будет сокращаться. В любом случае доля «мачо» в популяции будет приближаться к 1/2, и эта комбинация 50 на 50 будет эволюционно устойчивой полиморфной стратегией.

На рис. 12.7 данный исход представлен в графическом виде. Каждая прямая линия отображает приспособленность (ожидаемый выигрыш в противостоянии со случайно выбранным членом популяции) одного типа, в зависимости от доли «мачо» x. Для типа «тюфяк» эта функциональная зависимость, отображающая приспособленность этого типа как функцию доли «мачо», составляет — x, как мы определили выше. Это прямая с небольшим уклоном, которая начинается на высоте 0 при x = 0 и снижается до ?1 при x = 1. Типу «мачо» соответствует функция 1–3x. Это линия с большим уклоном, которая начинается на высоте 1 при x = 0 и снижается до ?2 при x = 1. Линия типа «мачо» проходит над линией типа «тюфяк» при x < 1/2 и под этой линией при x > 1/2. Это говорит о том, что уровень приспособленности типа «мачо» выше при малых значениях x, а уровень приспособленности типа «тюфяк» выше при больших значениях x.

Рис. 12.7. Графики уровня приспособленности, а также полиморфное равновесие в игре в труса

Теперь можем сравнить эволюционную теорию этой игры с нашей предыдущей теорией, сформулированной в главе 4 и главе 7, которая основывалась на предположении, что игроки умеют правильно рассчитывать свои лучшие стратегии. Там мы нашли три возможных равновесия Нэша: два в чистых стратегиях, когда один игрок едет прямо, а другой сворачивает, и одно в смешанных стратегиях, когда каждый игрок едет прямо с вероятностью 1/2 и сворачивает с вероятностью 1/2.

Если популяция действительно состоит из 100 % игроков типа «мачо», то все они в равной степени готовы к столкновению (или в равной степени не готовы). Точно так же в популяции, включающей исключительно «тюфяков», все они в равной степени готовы отступить. Но эти мономорфные конфигурации неустойчивы. В популяции, все члены которой «мачо», мутант типа «тюфяк» получит более высокий результат и захватит ее[215]. Наш анализ показывает, что как только в популяции появятся несколько «тюфяков», их доля неуклонно будет увеличиваться до 1/2, как бы мало их изначально ни было. Точно так же популяция, состоящая только из «тюфяков», уязвима для успешного вторжения мутантов «мачо», и этот процесс снова приводит к тому же полиморфизму. Таким образом, полиморфная конфигурация — единственный эволюционно устойчивый исход.

Наибольший интерес представляет связь между равновесием в смешанных стратегиях в рациональной игре и полиморфным равновесием в эволюционной игре. Соотношение стратегий в равновесной стратегии в первой игре точно такое же, как и соотношение типов в популяции во второй игре, где существует комбинация игроков типа «мачо» и «тюфяк» в пропорции 50 на 50. Но интерпретации у этих ситуаций разнятся: в рациональной игре каждый игрок смешивает собственные стратегии, а в эволюционной каждый член популяции использует чистую стратегию, но поскольку разные игроки применяют разные стратегии, образуется комбинация стратегий в популяции[216].

Такое соответствие между равновесием Нэша в рациональной игре и устойчивыми исходами игры с аналогичной структурой выигрышей в игре по эволюционным правилам — общая норма; мы увидим ее общий характер ниже в разделе 6. В действительности эволюционная устойчивость обеспечивает дополнительное обоснование для выбора одного из множества равновесий Нэша в играх, основанных на концепции рационального поведения игроков.

При анализе игры в труса с рациональной точки зрения равновесие в смешанных стратегиях казалось несколько озадачивающим. Оно оставляло лазейку для ошибок, которые могли обойтись очень дорого. Каждый игрок ехал прямо в одном случае из двух, а значит, в одном случае из четырех автомобили сталкивались. Равновесие в чистых стратегиях позволяло избежать таких столкновений. В то время это могло навести вас на мысль, что в равновесии в смешанных стратегиях есть нечто нежелательное; может, вы даже задавались вопросом, зачем вообще мы тратим на него время. Теперь вы понимаете причину. На первый взгляд странное равновесие возникает как устойчивый результат естественного динамического процесса, в ходе которого каждый игрок пытается улучшить свой выигрыш в популяции, которой он противостоит.