3. Изменение в методе анализа

We use cookies. Read the Privacy and Cookie Policy

Дерево игры — естественный способ отображения игр с последовательными ходами, а таблица выигрышей — естественный способ представления игр с одновременными ходами. Однако каждый из этих методов можно адаптировать к другому типу игр. Ниже мы покажем, как преобразовать одну форму представления информации в другую, и при этом сформулируем ряд новых идей, которые пригодятся для последующего анализа игр.

А. Представление игр с одновременными ходами с помощью дерева игры

Рассмотрим игру с обводящим ударом в теннисе, описанную в главе 4, в которой действия выполняются настолько быстро, что ходы, по сути, будут одновременными, как показано на рис. 6.5a. Однако предположим, что мы хотим представить эту игру в экстенсивной форме, то есть с помощью дерева игры, а не таблицы выигрышей, как на рис. 4.14. На рис. 6.7 показано, как это сделать.

Рис. 6.7. Игра в теннис с одновременными ходами, представленная в экстенсивной форме

Для того чтобы нарисовать дерево этой игры, необходимо выбрать одну ее участницу, например Эверт, которая будет делать выбор в начальном узле дерева. Ветви дерева, соответствующие двум вариантам выбора — ПЛ («по линии») и ПД («по диагонали»), заканчиваются в двух узлах, в каждом из которых делает выбор Навратилова. Однако поскольку на самом деле ходы в этой игре фактически одновременные, Навратилова должна сделать выбор, не зная, что выбрала Эверт. То есть Навратилова должна делать выбор, не зная, в каком узле она находится, — в том, к которому ведет ветвь Эверт ПЛ, или в том, к которому ведет ветвь ПД. Наша древовидная схема должна каким-то образом отображать эту нехватку информации у Навратиловой.

Мы проиллюстрируем стратегическую неопределенность Навратиловой в отношении узла, в котором она должна принимать решение, нарисовав овал, вмещающий в себя два соответствующих узла. (В качестве альтернативы можно соединить их пунктирной линией; она используется для того, чтобы отличить ее от сплошных линий, которые представляют ветви дерева.) Узлы, находящиеся в пределах этого овала или круга, называются информационным множеством игрока, делающего в них ходы. Такое множество указывает на наличие у этого игрока несовершенной информации: он не может провести различие между узлами множества на основании имеющейся информации (поскольку не может видеть ход другого игрока до того, как сделает свой ход). В соответствии с этим стратегический выбор, делаемый игроком в пределах одного информационного множества, должен подразумевать один и тот же ход во всех узлах, входящих в это множество. Иными словами, Навратилова должна выбрать либо ПЛ, либо ПД в обоих узлах данного информационного множества. Она не может выбрать ПЛ в одном узле и ПД в другом, как на рис. 6.5б, где представлена игра с последовательными ходами и Навратилова ходила второй.

В связи с этим мы должны внести коррективы в наше определение стратегии. В главе 3 мы определили ее как исчерпывающий план действий, указывающий, какие действия должен предпринимать игрок в каждом узле, в котором наступает его очередь ходить в соответствии с правилами игры. Теперь мы должны более точно определить стратегию как исчерпывающий план действий, указывающий, какие действия должен предпринимать игрок в каждом информационном множестве, в узлах которого наступает его очередь ходить в соответствии с правилами игры.

Концепция информационного множества также актуальна, когда игрок сталкивается с внешней неопределенностью в отношении некоторых условий, влияющих на его решение, а не ходов другого игрока. Например, фермер, сажающий ту или иную культуру, не знает, какая будет погода в период ее вегетации, хотя на основании своего опыта или метеорологических прогнозов может определить вероятность альтернативных возможностей. Мы можем рассматривать погоду как случайный выбор, который делает внешний игрок по имени «природа», не получающий никаких выигрышей, а просто выбирающий исходя из общеизвестных вероятностей[87]. В таком случае мы можем включить различные узлы, соответствующие ходам природы, в информационное множество фермера, ограничивающее его выбор одним и тем же действием во всех узлах. Эта ситуация проиллюстрирована на рис. 6.8.

Рис. 6.8. Природа и информационное множество

С помощью понятия информационного множества мы можем формализовать концепции совершенной и несовершенной информации в игре, которые ввели в главе 2 (раздел 2.Г). В игре присутствует совершенная информация, если в ней нет ни стратегической, ни внешней неопределенности, что происходит в случае отсутствия в игре информационных множеств, содержащих два или более узла. Иными словами, в игре имеется совершенная информация, если все ее информационные множества содержат единичные узлы.

Хотя с концептуальной точки зрения это достаточно простое представление, оно не упрощает способа решения игры. По этой причине мы используем его только тогда, когда оно позволяет проще передать ту или иную мысль. В главе 8 и главе 14 приведено несколько примеров представления игр с помощью информационных множеств.

Б. Представление и анализ игр с последовательными ходами в стратегической форме

Рассмотрим игру (рис. 6.6в) с последовательными ходами в монетарную и фискальную политику, в которой Конгресс ходит первым. Допустим, нам нужно представить эту игру в нормальной или стратегической форме, то есть в виде таблицы выигрышей, строки и столбцы которой — стратегии двух игроков. Следовательно, мы должны начать с определения стратегий.

Для Конгресса, делающего первый ход, перечислить стратегии не составит труда. Существует только два хода, «баланс» и «дефицит», они же являются стратегиями. Что касается игрока, делающего второй ход, то здесь все гораздо сложнее. Не забывайте, что стратегия — это исчерпывающий план действий, указывающий, какие действия должен предпринимать игрок в каждом узле, в котором наступает его очередь ходить. Поскольку ФРС получает право сделать ход в двух узлах (а также потому, что, согласно нашему предположению, ходы в этой игре действительно выполняются последовательно, а значит, эти два узла не объединяются в информационное множество) и может выбрать либо стратегию «низкие ставки», либо «высокие ставки» в каждом из узлов, существует четыре комбинации ее вариантов выбора: 1) «низкие ставки», если «баланс»; «высокие ставки», если «дефицит» (в сокращенном виде «Н, если Б; В, если Д»); 2) «высокие ставки», если «баланс»; «низкие ставки», если «дефицит» (сокращенно «В, если Б; Н, если Д»); 3) «низкие ставки» всегда; 4) «высокие ставки» всегда.

Полученная в результате матрица выигрышей два на четыре представлена на рис. 6.9. Последние два столбца не отличаются от тех, которые были в матрице выигрышей два на два, составленной для игры, в которой ходы выполнялись одновременно (рис. 6.6a). Это объясняется тем, что если ФРС выберет стратегию, согласно которой она делает одни и те же ходы всегда, то это равносильно тому, что ФРС делала бы свои ходы без учета того, что сделал Конгресс, то есть их ходы были бы как будто одновременными. Однако вычисление выигрышей в первых двух столбцах, где ход ФРС зависит от первого хода Конгресса, требует более пристального внимания.

Рис. 6.9. Игра с последовательными ходами с фискальной и монетарной политикой, представленная в стратегической форме

Для иллюстрации рассмотрим ячейку на пересечении первой строки и второго столбца. Здесь Конгресс выбирает «баланс», а ФРС — «В, если Б; Н, если Д». Учитывая выбор Конгресса, фактическим выбором ФРС в рамках этой стратегии будет стратегия «высокие ставки». В таком случае выигрыши здесь те же, что и в сочетании стратегий «баланс» и «высокие ставки», а именно 1 для Конгресса и 3 для ФРС.

Анализ наилучших ответов позволяет быстро определить, что в этой игре есть два равновесия Нэша в чистых стратегиях, что мы показываем, выделив соответствующие ячейки серым цветом. Одно отображено в верхней левой ячейке, в которой стратегия Конгресса — «баланс», а ФРС — «Н, если Б; В, если Д», а значит, фактический выбор ФРС — «низкие ставки». Этот исход представляет собой равновесие обратных рассуждений в игре с последовательными ходами. Однако есть еще одно равновесие Нэша в правой нижней ячейке, где Конгресс выбирает стратегию «дефицит», а ФРС — «высокие ставки». Как обычно в случае равновесия Нэша, ни у одного игрока нет явных оснований отклоняться от стратегий, приведших к данному исходу. Конгресс только ухудшил бы ситуацию, переключившись на стратегию «баланс», а ФРС не извлекла бы никакой пользы из перехода к любой из трех оставшихся стратегий, хотя при выборе стратегии «Н, если Б; В, если Д» был бы получен равноценный результат.

Анализ игры с последовательными ходами в ее экстенсивной форме обеспечивает только одно равновесие обратных рассуждений. Но если проанализировать эту же игру в нормальной или стратегической форме, в ней оказывается два равновесия Нэша. Что происходит?

Ответ на этот вопрос кроется в разном характере логики анализа равновесия Нэша и равновесия обратных рассуждений. Равновесие Нэша требует, чтобы ни у одного из игроков не было причины отклоняться от выбранной стратегии с учетом стратегии другого игрока. Однако в случае равновесия обратных рассуждений стратегии игроков, делающих ходы на более поздних этапах, не воспринимаются как данность. Вместо этого ставится вопрос о том, какое действие будет оптимальным в случае, если у игрока действительно появится возможность сделать ход.

В нашем примере стратегия ФРС «высокие ставки всегда» не удовлетворяет критерию оптимальности в случае появления возможности сделать ход. Если бы Конгресс выбрал стратегию «дефицит», то стратегия «высокие ставки» действительно была бы оптимальным ответом ФРС. Однако если бы Конгресс выбрал стратегию «баланс», а ФРС пришлось бы делать ответный ход, ей следовало бы применить стратегию «низкие ставки», а не «высокие». Стало быть, стратегия «высокие ставки всегда» не будет оптимальным ответным ходом ФРС во всех возможных конфигурациях игры и не может быть равновесием обратных рассуждений. Но логика равновесия Нэша не требует такой проверки; вместо этого стратегию ФРС «высокие ставки всегда» Конгресс мог бы обоснованно рассматривать как данность. И если он действительно сделает это, то стратегия «дефицит» — его наилучший ответ. Напротив, «высокие ставки всегда» — один наилучший ответ ФРС на стратегию Конгресса «дефицит» (хотя он и связан с условием «Н, если Б; В, если Д»). Следовательно, пара стратегий «дефицит» и «высокие ставки всегда» — обоюдно наилучшие ответы, входящие в состав равновесия Нэша, хотя они и не образуют равновесия обратных рассуждений.

Таким образом, мы можем считать равновесие обратных рассуждений добавочным критерием, который дополняет равновесие Нэша и помогает выбрать одно из множества равновесий Нэша, присутствующих в стратегической форме. Другими словами, это уточнение концепции равновесия Нэша. Чтобы сформулировать эту идею несколько более точно, вспомним понятие подыгры. По мере того как игроки по очереди делают свой выбор, игра проходит по непрерывной последовательности узлов, и каждый ход можно рассматривать как начало подыгры. Равновесие, полученное посредством метода обратных рассуждений, соответствует одной конкретной последовательности вариантов выбора в каждой подыгре и создает один конкретный путь игры. Безусловно, другие ее пути также согласуются с правилами игры. Мы называем такие пути неравновесными путями игры, а подыгры, разворачивающиеся на них, неравновесными подыграми.

Вооружившись этими терминами, мы теперь можем сказать, что равновесный путь игры сам по себе определяется ожиданиями игроков в отношении того, что бы произошло, если бы они выбрали другое действие, то есть если бы переместили игру на неравновесный путь и начали неравновесную подыгру. Равновесие обратных рассуждений требует от игроков делать свой наилучший выбор в каждой подыгре более крупной игры, независимо от того, находится ли эта подыгра на пути к конечному равновесному исходу.

Стратегии — это исчерпывающие планы действий. Следовательно, стратегия игрока должна определять, что он будет делать в каждом предполагаемом случае или в каждом узле игры (будь то на ее равновесном или неравновесном пути), в котором наступает его очередь ходить. Когда игра достигает одного такого узла, применим только тот план действий, который начинается в этом узле, а именно та часть полной стратегии, которая относится к подыгре, стартующей в данном узле. Эта часть называется продолжением стратегии в этой подыгре. Согласно равновесию обратных рассуждений, равновесная стратегия должна быть такой, чтобы ее продолжение в каждой подыгре было оптимальным для каждого игрока, который должен ходить в этом узле, независимо от того, лежат ли этот узел и подыгра на равновесном пути игры.

Вернемся к игре с монетарной политикой, в которой Конгресс делает первый ход, и рассмотрим второе равновесие Нэша, возникающее при представлении игры в стратегической форме. Здесь путь игры Конгресса состоит в выборе стратегии «дефицит», а ФРС — стратегии «высокие ставки». На равновесном пути стратегия «высокие ставки» — действительно лучший ответ ФРС на стратегию «дефицит». Выбор Конгрессом стратегии «баланс» был бы началом неравновесного пути. Он ведет к узлу, в котором разыгрывается довольно простая подыгра, а именно решение принимает ФРС. Предполагаемая равновесная стратегия ФРС «высокие ставки всегда» подразумевает, что ФРС в этой подыгре применит стратегию «высокие ставки». Однако это неоптимально: второе равновесие определяет неоптимальный выбор в случае неравновесной подыгры.

Напротив, равновесный путь в равновесии Нэша в левом верхнем углу рис. 6.9 состоит в выборе Конгрессом стратегии «баланс», а ФРС — «низкие ставки». ФРС выбирает оптимальный ответ на равновесном пути. Неравновесный путь состоял бы в выборе Конгрессом стратегии «дефицит», а ФРС с учетом своей стратегии «Н, если Б; В, если Д» применила бы стратегию «высокие ставки». Для ФРС выбор стратегии «высокие ставки» в ответ на стратегию Конгресса «дефицит» оптимален, а значит, эта стратегия остается оптимальной и на неравновесном пути игры.

Требование о том, что продолжение стратегии должно оставаться оптимальным при любых обстоятельствах, действительно важно, поскольку сам равновесный путь — это результат стратегических рассуждений игроков о том, что бы произошло, если бы они сделали нечто иное. Игрок, которому предстоит ходить следующим, может попробовать обеспечить предпочтительный для себя исход, пригрозив игроку, делающему первый ход, что его определенные действия встретят серьезный отпор, или, наоборот, пообещав, что определенные действия получат одобрение. Однако игрок, делающий первый ход, скептически отнесется к достоверности таких угроз и обещаний. Единственный способ развеять сомнения — проверить, действительно ли заявленные ответные действия будут оптимальны в случае, если в них возникнет необходимость. Если они неоптимальны, то угрозы и обещания недостоверны, а соответствующие ответные ходы не будут присутствовать на равновесном пути игры.

Равновесие, найденное методом обратных рассуждений, называется совершенным равновесием подыгры и представляет собой совокупность стратегий (исчерпывающих планов действий), по одной на каждого игрока, при которой в каждом узле дерева игры, независимо от того, лежит ли он на ее равновесном пути, продолжение одной и той же стратегии в подыгре, начинающейся в данном узле, будет оптимальным для игрока, совершающего там действие. Проще говоря, совершенное равновесие подыгры требует, чтобы игроки использовали стратегии, образующие равновесие Нэша в каждой подыгре более крупной игры.

Как правило, в играх с конечными деревьями и совершенной информацией, в которых участники могут наблюдать все предыдущие действия, предпринятые всеми игроками, а значит, нет нескольких узлов, входящих в одно информационное множество, анализ методом обратных рассуждений позволяет найти единственное (за исключением элементарных и уникальных случаев равного распределения выигрышей) совершенное равновесие подыгры. Подумайте вот о чем: если проанализировать любую подыгру, которая начинается в последнем узле принятия решений последним игроком, делающим ход, то его наилучший выбор — стратегия, обеспечивающая ему самый высокий выигрыш. Но это и есть действие, выбранное в ходе обратных рассуждений. По мере перемещения игроков по дереву игры в обратном направлении обратные рассуждения исключают все нецелесообразные стратегии, в том числе недостоверные угрозы или обещания, в результате чего совокупность действий, предпринятых в конечном счете, представляет собой совершенное равновесие подыгры. Следовательно, в контексте данной книги совершенное равновесие подыгры — это просто еще одно замысловатое название равновесия обратных рассуждений. На более продвинутых уровнях теории игр, где игры включают в себя сложные структуры данных и информационные множества, совершенное равновесие подыгры имеет более глубокий смысл.