41. Обсуждение задачи о поездах

We use cookies. Read the Privacy and Cookie Policy

Хотя на поставленные вопросы вряд ли можно дать «правильный» ответ, все же возможно разумное объяснение этих задач. Например, согласно принципу симметрии, если на отрезок бросается одна точка, то в среднем два полученных отрезка имеют одинаковую длину, так что в пункте (а) ответ равен 119, так как длина левого промежутка равна 59, 2·59 = 118 и 118 + 1 = 119.

Аналогично в пункте (б) можно предположить, что пять наблюденных номеров разбивают весь отрезок на шесть равных частей. Так как 60 ? 5 = 55, то средняя длина первых пяти отрезков равна 11, и общее число номеров может быть оценено как 60 + 11 = 71 (рис. 16). Конечно, оценка не может быть абсолютно точной при многократном употреблении.

Рис. 16.

Указанный метод заставляет думать, однако, что в среднем при многократном использовании такие оценки мало отличаются от истинного значения N при большом числе наблюдений. Если неизвестное число N подлежит оценке во многих задачах, то, следуя каждый раз приведенному методу (извлечь выборку, построить оценку), мы в среднем будем близки к истинному значению при достаточно больших объемах выборок.

С другой стороны, может быть и так, что вас не интересует приближение в среднем или недоступно большое число наблюдений, но вы хотите угадать значение N, несмотря на то, что это маловероятно. Тогда разумно оценить N как наблюденный максимум из номеров. Если вы, например, знаете номера двух локомотивов, то вероятность того, что один из двух номеров — максимально возможный, равна или 2/N.

Иногда пользуются методом доверительного оценивания, при котором в качестве оценки предлагается некоторый интервал для неизвестного параметра. Ограничимся случаем одного наблюдения. Если наудачу извлечь один из номеров 1, 2, ..., N, то вероятность появления каждого номера равна 1/N. Поэтому вероятность того, что наш номер принадлежит некоторому множеству, равна числу элементов этого множества, деленному на N. Так, если, скажем, n — это случайный номер, а N — четное число, то P(n > N/2) = 1/2, для нечетных значений N эта вероятность несколько больше. Таким образом, если n случайно, то вероятность события n > N/2 не меньше 1/2. Если мы наблюдаем значение n, а N не известно, то в качестве верхней границы для N мы можем предложить 2n. В каждом отдельном случае утверждение 2n > N верно или нет, однако, оно справедливо более, чем в половине случаев. Если желать увеличения процента правильных высказываний, то надо изменить доверительный предел.

Так, например,

и утверждение 3n ? N справедливо по крайней мере в 2/3 случаях. В нашей задаче, если мы хотим быть уверенными в справедливости нашего высказывания о значении числа N в 2/3 из 100% случаев, то можем сказать, что N лежит в промежутке с концами 60 и 180.

Другим часто используемым методом для оценивания является метод максимального правдоподобия, согласно которому значение N выбирается таким образом, чтобы сделать наблюденную выборку наиболее вероятной. Так, например, если N = 100, то наше наблюденное значение 60 имеет вероятность 1/100, в случае же N = 60 эта вероятность равна 1/60. Мы не можем оценить N значением, меньшим 60, так как для N = 59 или меньшем вероятность появления номера 60 равна нулю. Следовательно, если n — наблюденный номер, то оценкой максимального правдоподобия для N является само n.

В задаче не предполагалось наличие добавочной информации, такой, как «это большая железная дорога, и на ней по крайней мере 100 поездов, но, наверное, меньшее, чем 100 000», которая, конечно, может быть полезна.