20. Решение задачи о трехсторонней дуэли
У дуэлянта A мало оснований для оптимизма по поводу настоящей дуэли. Если он стреляет первым, то при попадании в C наверняка B попадет в него, поэтому A не должен стрелять в C. Если же A выстрелит в B и промахнется, то B, наверное, выведет из строя более опасного C первым и A сможет стрелять в B с вероятностью попадания 0.3. Если же A промахнется, то его песенка спета. С другой стороны, предположим, что A попадет в B. Тогда C и A будут перестреливаться до первого попадания. Шансы выигрыша A равны
(0.5)·(0.3) + (0.5)?·(0.7)·(0.3) + (0.5)?·(0.7)?·(0.3) + ...
Каждое слагаемое отвечает последовательности промахов C и A, заканчивающихся успехом A. Суммируя геометрический ряд, получаем
Таким образом, попасть в B и затем покончить с C — стратегия, дающая для A меньшую вероятность выигрыша, чем пропуск первого выстрела. Поэтому A должен стрелять в воздух, а затем стараться попасть в B.
Обсуждая эту задачу с Т. Лерером, я спросил его, благородно ли это решение с точки зрения кодекса о дуэлях. Лерер возразил, что подобный кодекс для дуэлей с тремя участниками не разработан, так что мы с полным основанием можем простить A преднамеренный промах.