ПЕРЕМЕЖАЕМОСТЬ ТУРБУЛЕНТНОСТИ

Турбулентность в конце концов заканчивается рассеянием: благодаря вязкости жидкости энергия видимого движения преобразуется в тепло. В ранних теориях предполагалось, что это рассеяние однородно в пространстве. Однако надежды на то, что модель «гомогенной турбулентности» может иметь хоть какой-то смысл были рассеяны Ландау и Лифшицем [286], которые отмечают, что одни области характеризуются высокой степенью рассеяния, тогда как в других по сравнению с первыми рассеяние практически отсутствует. Это означает, что хорошо известное свойство ветра налетать порывами отражено — и даже более последовательным образом — и в меньших масштабах.

Этот феномен, получивший название перемежаемость, был впервые исследован в работе [19], с. 253. См. также [18] (раздел 8.3), [433] и [434]. Особенно ярко выражена перемежаемость при очень больших числах Рейнольдса, т. е. когда внешний порог турбулентности достаточно велик по отношению к ее внутреннему порогу (например, на звездах, в океанах и в атмосфере).

Области, в которых сосредоточивается рассеяние, весьма удобно называются несущими или опорными.

Тот факт, что мы сводим в этом эссе вместе перемежаемость турбулентности и распределение галактик, совершенно естествен и даже не нов. Некоторое время назад физики (например, [579]) предприняли попытку объяснить происхождение галактик с помощью турбулентности. Понимая, что гомогенная турбулентность не сможет объяснить звездной перемежаемости, фон Вайцзекер набросал несколько поправок в духе модели Фурнье (или Шарлье, см. главу 9), а, значит, и в духе представляемой здесь теории. Если бы сегодня кто-нибудь занялся подобной объединяющей деятельностью, он вполне смог бы установить физическую связь между двумя типами перемежаемости и определить соответствующие самоподобные фракталы.

Одной из целей такого объединения может быть соотнесение размерности распределения галактик (D~1,23, как нам известно) с размерностью, характеризующей турбулентность (где-то в районе 2,5-2,7).