20 ФРАКТАЛЬНЫЕ АТТРАКТОРЫ И ФРАКТАЛЬНЫЕ («ХАОТИЧЕСКИЕ») ЭВОЛЮЦИИ

Эта глава имеет своей целью познакомить читателя с одной теорией, которая развивалась вне всякой связи с фрактальными множествами и все же оказалась буквально пронизана ими. Чаще всего ее называют «теорией странных аттракторов и хаотической (или стохастической) эволюции», однако в тексте главы вы, я надеюсь, найдете причины, побудившие меня дать этой теории новое имя (см. заголовок).

Для того чтобы попасть в настоящее эссе упомянутой теории, достаточно было всего лишь быть так или иначе связанной с фракталами; я же считаю оправданным посвятить ей целую главу. Первое оправдание (практическое): эта теория почти не требует какого бы то ни было особого представления, так как б?льшую часть ее основных положений можно рассматривать просто как новую интерпретацию выводов, полученных нами в главах 18 и 19.

Во-вторых, теория фрактальных аттракторов помогает – путем противопоставления – прояснить некоторые особенности фрактальной геометрии природы. В самом деле, моя работа связана, в основном, с формами, присутствующими в реальном пространстве, с формами, которые можно увидеть, пусть даже и в микроскоп; теория аттракторов же имеет дело исключительно с эволюцией во времени расположения неких точек в невидимом и абстрактном репрезентативном пространстве.

Особенно силен этот контраст оказывается в контексте турбулентности – моя первая большая тема (работу над ней я начал в 1964 г.), где я использовал ранние формы фрактальных методик и (вполне независимо от них) теорию странных аттракторов, которая вполне всерьез сочетается с изучением турбулентности в работе [505]. До сих пор эти два подхода еще не пересеклись, но ждать осталось недолго.

Тем, кто интересуется социологией науки, несомненно, покажется занимательным следующий факт: в то время как мои прецедентные исследования, связывающие математических чудовищ с реальными физическими структурами, встречаются с ощутимым сопротивлением, чудовищные формы абстрактных аттракторов воспринимаются с завидной невозмутимостью.

Третий довод в пользу необходимости разговора о фрактальных аттракторах связан с тем, что соответствующие эволюции выглядят «хаотическими» или «стохастическими». Как станет ясно из глав 21 и 22, многие ученые сомневаются в уместности применения случайного в науке; теперь же появляется надежда на оправдание случайности с помощью фрактальных аттракторов.

И наконец, те читатели, кто несколько глав (или пару эссе) назад согласился с моим утверждением о том, что многие из природных проявлений могут быть описаны только с помощью неких множеств, считавшихся ранее патологическими, возможно, с нетерпением ожидают перехода от «как» к «почему». Думаю, приведенные ранее описания и демонстрации дают представление о том, как легко в некоторых случаях оказывается подсластить упомянутые в предыдущих главах геометрические пилюли, чтобы их легче было проглотить. Я же хочу привить читателю вкус именно к фракталам – независимо от того, насколько горьким кажется этот вкус большинству зрелых ученых. Кроме того, я искренне убежден (и еще вернусь к этому в главе 42), что псевдообъяснение посредством подслащивания просто-напросто неинтересно. Таким образом, важность объяснения, судя по всему, сильно преувеличена, и мы будем прибегать к нему лишь в тех случаях, когда имеющееся объяснение действительно интересно – как, например, в главе 11. Вдобавок ко всему, я подозреваю, что когда фрактальные аттракторы лягут в основу фрактальной геометрии видимых естественных форм, появится много новых более детальных и убедительных объяснений.

Так как преобразования с аттракторами нелинейны, наблюдаемые фракталы, скорее всего, окажутся не самоподобными. Это замечательно: мне кажется, что использование фрактального аналога прямой для описания феноменов, управляемых нелинейными уравнениями, выглядит несколько парадоксально. Масштабно-инвариантные фракталы, хорошо объясняющие естественные феномены, могут выступать лишь как локальные приближения нелинейных фракталов.