УМНОЖЕНИЕ РАЗМЕРНОСТЕЙ

В главах 6 и 7 мы упоминали о том, что кривые Коха и Пеано можно рассматривать как следы «движений», временной параметр t которых лежит в интервале [0,1]. Если в качестве примера взять генератор снежинки Коха, то это время определяется следующим образом: четыре звена генератора покрываются в те моменты времени, значения которых, разложенные по основанию 4, начинаются, соответственно, с 0, 1, 2 и 3. А, скажем, вторая четверть третьей четверти генератора покрывается в те моменты времени, значения которых, разложенные по основанию 4, начинаются с 0,21. Рассматриваемые в виде движений, кривые Коха и Пеано сами являются «фрактальными отображениями» интервала [0,1]. В этом смысле воздействие упоминаемой ранее децимации звеньев генератора заключается в том, чтобы удалить те значения t, которые содержат цифры 1 и 2 (или 0 и 3), ограничив тем самым параметр t значениями, принадлежащими определенной канторовой пыли на интервале [0,1].

Следовательно, мы можем охарактеризовать наши субординатные подмножества кривых Коха и Пеано как фрактальные отображения фрактального подмножества моментов времени. Совершенно очевидно, что такое подмножество представляет собой канторову пыль; назовем его субординатором. Его размерность равна lnN/lnN'=ln2/ln4=?. Обобщая, получаем следующее не требующее дополнительных объяснений соотношение:

Dсубордината=Dсубординанда?Dсубординатора.

Это также обобщает и то соотношение, которое характеризует движение Коши. При рассмотрении сечений и пересечений мы уже встречались с суммами размерностей. Теперь же оказывается, что в нашем замечательном «исчислении» смысл имеют не только суммы, но и произведения размерностей.

Разумеется, это правило имеет исключения, аналогичные тем, которые являются исключениями из правила о сложении коразмерностей при пересечении.