ЦЕПНЫЕ КРИВЫЕ И СКВИГ – КРИВЫЕ: СРАВНЕНИЕ

Остановимся на минуту и припомним, что независимо от того, получаем ли мы фрактальную кривую цепным методом Чезаро или с помощью оригинального метода Коха, погрешность, возникающая при остановке процесса, распределяется вдоль кривой очень неоднородно. Полезным здесь может оказаться тот факт, что некоторые точки уже после конечного числа этапов подходят к своему предельному положению бесконечно близко. Это обстоятельство, к примеру, помогло Коху в отыскании простейшей кривой, не имеющей касательных ни в одной своей точке. Однако сущность понятия кривой становится гораздо яснее, если рассматривать кривую как предел полосы однородной ширины. Мои сквиг – кривые вполне отвечают этому условию.

Следующий пункт сравнения связан с числом произвольных решений, которые приходится принимать «создателю» при том и другом подходе. Подход Коха к построению неслучайных или случайных фракталов необычайно эффективен (он, в частности, позволяет достичь любой желаемой размерности в рамках относительно простой кривой), однако он требует от создателя принятия многочисленных специфических решений, причем все они, так или иначе, зависят друг от друга. Значение b здесь также не является внутренней характеристикой.

Все мы знаем, что наука немало настрадалась от недостатка в евклидовой геометрии моделей для описания негладких природных форм, а потому известие о том, что фрактальная геометрия способна справиться с этим, несомненно, бедственным положением, должно, казалось бы, наполнить наши сердца восторгом. Боюсь, однако, что на настоящей стадии развития теории восторги придется несколько попридержать и постараться обойтись как можно меньшим числом произвольных решений.

В этом свете факт наличия весьма серьезных ограничений, налагаемых геометрией плоскости на построение сквиг – кривых (в результате чего сквиг - кривые получаются более предсказуемыми и менее разнообразными), выглядит достоинством.