ЭДМУНД ЭДВАРД ФУРНЬЕ Д'АЛЬБ (1868 – 1933)

Фурнье д'Альб («Кто есть кто в науке», с. 593) избрал для себя жизнь независимого научного журналиста и изобретателя: он создал приспособление, позволяющее слепым «слышать» буквы, и первым передал телевизионный сигнал из Лондона.

Своим именем он обязан предкам – гугенотам. Частично немецкое образование и постоянное проживание в Лондоне, где он по окончании вечернего колледжа получил степень бакалавра гуманитарных наук, не помешали ему за время краткого пребывания в Дублине сделаться ирландским патриотом и активистом Панкельтского движения. Ко всему прочему, он был сторонником спиритуализма и религиозным мистиком.

Известность ему принесла книга «Два новых мира». Она получила очень хорошие рецензии в журнале «Nature», где рассуждения автора названы «простыми и разумными», и в газете «The Times», которая сочла авторские умопостроения «любопытными и увлекательными». Однако в некрологах Фурнье д'Альбу, опубликованных в тех же «Nature» и «The Times», о ней почему-то нет ни слова. Сейчас эту книгу почти невозможно найти, и редкое упоминание о ней обходится без саркастических комментариев.

Согласен, это не та книга, в которой физик сможет найти хоть что-нибудь, обладающее непреходящей физической ценностью. Более того, мне советовали не привлекать к ней излишнего внимания из опасения, что кто-нибудь воспримет ее по б?льшей части весьма спорное содержимое всерьез. Однако правильно ли будет с нашей стороны использовать против Фурнье аргумент, который нам и в голову бы не пришло использовать против Кеплера? Я вовсе не хочу сказать, что Фурнье – это Кеплер нашего времени; он едва дотягивает до уровня научных достижений других наших героев. И все же утверждение одного критика, заявившего, что «в научном отношении работа этого самозваного "Ньютона души человеческой" абсолютно пуста», представляется мне чрезмерно резким и поспешным.

В самом деле, Фурнье первым переформулировал старое интуитивное представление о галактических скоплениях (восходящее еще к Канту и современнику Канта Ламберту) в терминах, достаточно точных для того, чтобы мы сегодня могли делать заключения об их размерности D=1. Так что хоть чем-то непреходящим мы Фурнье - таки обязаны.