4. D КАК РАЗМЕРНОСТЬ ФРОСТМАНА

Между величинами C(S) и F имеет место простое соотношение. Когда показатель F, используемый при определении емкости C(S), больше, чем размерность D Хаусдорфа – Безиковича, C(S) обращается в нуль, - это означает, что даже при «наиболее эффективном» распределении массы по множеству S потенциал в какой-то из точек бесконечен. Когда же F меньше D, емкость множества S положительна. То есть размерность Хаусдорфа – Безиковича выступает здесь, согласно Пойа и Серё, как емкостная размерность. Тождественность этих понятий была в наиболее общем виде доказана Фростманом [158].

В этой связи стоит упомянуть и о сложном соотношении между емкостной мерой и мерой Хаусдорфа в размерности D, полученном Телором (см. [559]).