УСТОЙЧИВЫЕ ПО ЛЕВИ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ФУНКЦИИ

Среди достоинств гиперболического распределения отметим непревзойденную формальную простоту и инвариантность при усечении (см. раздел масштабная инвариантность при усечении). Другие преобразования, оставляющие его инвариантным, нас сейчас не интересуют. Гораздо большее значение для нас имеют сейчас распределения, инвариантные при сложении. Гиперболическими они являются лишь асимптотически, а Поль Леви выбрал для них в свое время в качестве названия донельзя перегруженный термин: «устойчивые распределения». Он же ввел и понятие устойчивого процесса, в котором участвуют как гиперболическое, так и устойчивое распределения.

До публикации моих работ устойчивые случайные величины считались явлениями «патологическими» и даже «чудовищными»; единственное исключение составлял случайный вектор Хольтсмарка, о котором мы поговорим в подразделе 9. Я предложил некоторые области приложения устойчивых случайных величин, важнейшие из которых описаны в главах 31, 32 и 37; Кроме того, ниже (подраздел 4) упоминается о возможности применения таких величин в генетике.

Литература. Существует огромное количество различных источников, но ни один из них нельзя счесть удовлетворительным. В монографии Феллера ([148], том II) материал по устойчивости представлен, пожалуй, в самом полном объеме, однако он разбросан по всей книге, и порой очень трудно отыскать необходимые сведения. Книга Ламперти [284] может послужить неплохим введением в курс дела. Рекомендую также и работу Гнеденко и Колмогорова [172], несмотря на ее почтенный возраст. Много полезных подробностей можно найти у Лукача [320]. Оригинальные трактаты Леви [302, 304] вряд ли придутся по вкусу всем, поскольку эти великие научные труды являют собой яркие образцы авторского стиля (см. главу 40).