СЛУЧАЙНЫЕ БЕРЕГОВЫЕ ЛИНИИ: ПРЕДВАРИТЕЛЬНЫЙ ВЗГЛЯД

Кривая Коха похожа на настоящие береговые линии, однако она имеет кое-какие существенные недостатки (эти недостатки практически в неизменном виде присущи всем ранним моделям рассматриваемых в настоящем эссе прецедентов). Ее части идентичны одна другой, а коэффициент само подобия r непременно задается жесткой шкалой вида b?k, где b — целое число, т. е. r=1/3, (1/3)2 и т.д. Таким образом, кривую Коха можно считать лишь очень предварительной моделью береговой линии.

Я разработал несколько способов избавления от этих недостатков, однако ни один из них не обходится без известных вероятностных усложнений, с которыми нам на данный момент не справиться: сначала следует уладить множество вопросов, касающихся неслучайных фракталов. Интересующемуся же читателю, знакомому с теорией вероятности, ничто не мешает заглянуть немного вперед и полюбоваться на модели, основанные на моих «сквиг-кривых» (см. главу 24) и, что более важно, на линиях уровня дробных броуновских поверхностей (см. главу 28).

Здесь и далее я использую следующий способ представления материала. Многочисленные узоры, создаваемые Природой, рассматриваются на фоне упорядоченных фракталов, которые могут служить пусть и очень приблизительными, но все же моделями рассматриваемых феноменов, тогда как предлагаемые мною случайные модели отнесены в более поздние главы.

Памятка. Во всех случаях, когда значение D известно точно, не является целым числом и записано в десятичной форме с целью облегчения сравнений, в нем сохраняются четыре знака после запятой. Число 4 было выбрано исходя из следующих соображений: я хотел показать, что в данном случае значение D не является ни эмпирическим (все эмпирические значения в настоящее время известны с точностью до одного или двух десятичных знаков), ни не вполне определенным геометрическим значением (все подобные значения в настоящее время известны либо с точностью до одного-двух десятичных знаков, либо с точностью до шести десятичных знаков).