10 ГЕОМЕТРИЯ ТУРБУЛЕНТНОСТИ; ПЕРЕМЕЖАЕМОСТЬ

Исследование турбулентности — одна из старейших, сложнейших и наиболее неблагодарных глав в истории физики. Простого здравого смысла и кое-какого опыта достаточно, чтобы показать, что в одних условиях поток газа или жидкости остается гладким (в специальной терминологии — «ламинарным»), а в других — нет. Вот только где провести границу? Следует ли обозначать термином «турбулентность» все негладкие потоки, включая большую часть метеорологических и океанографических феноменов? Или лучше будет сузить значение этого термина до какого-то одного класса, и если да, то до какого? Создается впечатление, что у каждого ученого имеются собственные ответы на эти вопросы.

К счастью, нам не нужно разбираться здесь с этими расхождениями во мнениях, так как мы намерены заниматься лишь бесспорно турбулентными потоками, самой заметной характеристикой которых является полное отсутствие сколько-нибудь определенного масштаба длины: в рамках одного процесса соседствуют «вихри» всевозможных размеров. Эта характерная черта хорошо видна на рисунках Леонардо и Хокусая. Она указывает на то, что турбулентность глубоко чужда духу «старой» физики, которая имела дело лишь с явлениями, имеющими вполне определенный масштаб. И та же самая причина включает изучение турбулентности в круг наших непосредственных интересов.

Кому-то из читателей, наверное, известно, что практически все исследователи турбулентности сосредоточивались на аналитическом рассмотрении потока жидкости, совершенно не касаясь геометрической стороны проблемы. Хочется верить, что эта несбалансированность не отражает предубежденного отношения к геометрии. По сути дела, многие геометрические формы, участвующие в турбулентности, легко увидеть или сделать видимыми, и они прямо-таки напрашиваются на надлежащее описание. Однако им не удавалось привлечь к себе заслуженного внимания до появления фрактальной геометрии. Потому что, как я с самого начала и предполагал, турбулентность включает в себя множество фрактальных аспектов; о некоторых из них мы поговорим в этой и последующих главах.

Здесь необходимо сделать две оговорки. Во-первых, мы оставим в стороне проблему возникновения турбулентности в ламинарном потоке. У меня есть серьезные основания полагать, что в это возникновение также вовлечены некоторые, весьма важные, фрактальные моменты, однако они еще недостаточно разъяснены и поэтому их еще рано обсуждать здесь. Во-вторых, мы не намерены затрагивать такие периодические структуры, как ячейки Бенара и дорожки Кармана.

Начинается глава с призывов о более геометрическом подходе к турбулентности и об использовании при ее исследовании фракталов. Призывы эти многочисленны, но весьма кратки, так как включают в себя в основном предположения с очень небольшим (пока) количеством практических результатов.

После этого мы сосредоточимся на проблеме перемежаемости, которую я довольно активно исследовал. Самый важный из моих выводов состоит в том, что область рассеяния, т. е. пространственное множество, на котором концентрируется турбулентное рассеяние, может быть смоделировано фракталом. Из произведенных с различными целями измерений можно заключить, что размерность D этой области лежит где-то в районе 2,5-2,6, но, вероятно, не превышает 2,66.

К сожалению, у нас не получится построить точную модель, пока мы не определим топологические свойства области рассеяния. В частности, представляет ли она собой пыль, извилистую разветвленную кривую (вихревую трубу) или волнистую слоистую поверхность (вихревой лист)? Первое предположение маловероятно, а второе и третье предполагают модели, похожие на разветвленные фракталы из главы 14. Однако принять такое решение мы с вами пока не можем. Прогресс на новом фрактальном фронте никак не помогает нам разобраться с фронтом старым, топологическим. Наши знания о геометрии турбулентности все еще пребывают в зачаточном состоянии.

Большая часть материала этой главы не требует какой-либо специальной подготовки. < Но специалист наверняка заметит, что часть фрактального анализа турбулентности представляет собой геометрический аналог аналитического анализа корреляций и спектров. Отношения между теориями турбулентности и вероятности — старая история. В самом деле, самые первые исследования Дж. И. Тейлора оказались вторым по значимости (после броуновского движения Перрена) фактором, оказавшим серьезное влияние на создание Норбертом Винером математической теории стохастических процессов. Спектральный анализ уже давно вернул (даже с процентами) все, что он «занимал» в тогдашних исследованиях турбулентности. Настало время и для теории турбулентности воспользоваться достижениями современной стохастической геометрии. В частности, спектр Колмогорова имеет геометрический аналог, который мы рассмотрим в главе 30. ?