ВЫМЫШЛЕННЫЙ ПРИМЕР

Позвольте мне описать некий пример, который фундаментальнейшим образом не согласуется с физическим механизмом упорядочения, однако обладает некоторыми несомненными достоинствами: он прост, и, кроме того, в нем (в качестве примера доказуемого слабого предела) фигурирует наша старая фрактальная приятельница, салфетка Серпинского (см. главу 14). В точках с целочисленными координатами разместим спины таким образом, чтобы в четные (нечетные) моменты времени они занимали четные (нечетные) места. Знак каждого спина определяется в соответствии со следующим правилом: спин S(t,n) в момент времени t и в позиции n отрицателен, если спины S(t?1,n?1) и S(t+1,n+1) одинаковы, и положителен в противном случае.

Прямая, состоящая из равномерно расположенных отрицательных спинов, остается после проведения описанной процедуры инвариантной. Проследим эффекты, возникающие при включении в нее положительной «примеси» в точке с координатой n=0 в момент времени t=0. Все спины S(1,n) отрицательны, кроме спинов, расположенных в точках n=?1 и n=+1. Последующие конфигурации выглядят таким вот образом:

Многие читатели, несомненно, узнают в этом построении треугольник Паскаля, в котором места расположения нечетных биномиальных коэффициентов отмечены знаками +. В полном треугольнике Паскаля t - я строка дает значения коэффициентов в разложении бинома (a+b)t.

Всякий, кто прочел главу 14, сразу увидит, что если соединить каждый плюс с соседними плюсами, то получится граф, родство которого с салфеткой Серпинского просто бросается в глаза (см. [499]). Более того, при уменьшении шага решетки этот граф сходится именно к салфетке Серпинского.