РАЗМЕРНОСТЬ ФУРЬЕ И ЭВРИСТИКА

Пусть ?(x) - некоторая неубывающая функция от x?[0,1]. Если максимальные открытые интервалы, в которых значение ? постоянно, составляют в сумме дополнение замкнутого множества S, то мы говорим, что множество S является опорным для d?(x). Преобразование Фурье – Стилтьеса функции ? имеет вид

.

Самые гладкие функции ? дают наивысшую возможную скорость уменьшения

. Обозначим через DF наибольшее вещественное число, при котором, по меньшей мере, одна функция ?(x) с носителем S удовлетворяет равенству

при f?? для всех ?>0,

но ни одна ?(x) не удовлетворяет

при f?? для некоторых ?>0.

Выражение «a=O(b) при f??» означает здесь, что

. Когда множество S заполняет весь интервал [0,1], величина DF бесконечна. И напротив, когда S - одна – единственная точка, DF=0. Интересно, что, когда S представляет собой множество нулевой меры Лебега, величина DF конечна и не превышает размерности Хаусдорфа – Безиковича D этого множества. Неравенство DF?D показывает, что фрактальные и гармонические свойства фрактального множества связаны между собой, но не обязательно совпадают.

Для доказательства того, что эти размерности могут различаться, предположим, что S - это множество на прямой, причем его размерность D равна DF. Если рассматривать S как множество на плоскости, то размерность D не изменится, а DF обратится в нуль.

Определение. В качестве удобного способа обобщения некоторых гармонических свойств S, предлагаю назвать величину DF размерностью Фурье множества S.

Множества Сейлема. Равенство DF=D описывает целую категорию множеств, называемых множествами единственности, или множествами Сейлема (см. [255, 248]).

Эмпирическое правило и эвристика. Интересующие нас в прецедентных исследованиях фракталы оказываются, как правило, множествами Сейлема. Поскольку величина DF во многих случаях легко определяется из экспериментальных данных, можно использовать ее для оценки D.

Неслучайные множества Сейлема. Неслучайная канторова пыль является множеством Сейлема только тогда, когда коэффициент r удовлетворяет определенным теоретико-числовым свойствам.

Случайные множества Сейлема. Случайная канторова пыль является множеством Сейлема тогда, когда ее случайность достаточно велика для нарушения любой арифметической закономерности.

Оригинальный пример, предложенный самим Р. Сейлемом, очень сложен. В качестве альтернативного примера можно привести пыль Леви: в [253] показано, что спектр dL(x) (здесь L(x) - лестница Леви, см. рис. 399) в среднем почти совпадает со спектром дробной броуновской функции из прямой в прямую и представляет собой сглаженный вариант спектра функции Гаусса – Вейерштрасса.

В монографии [248] (теоремы 1, с. 165, и 5, с. 173) показано, что образ компактного множества S с размерностью ? относительно дробной броуновской функции из прямой в прямую с показателем H представляет собой множество Сейлема с размерностью D=min(1,?/H).

Канторова пыль не является множеством Сейлема. Троичная канторова пыль появилась в свое время на свет в результате поисков Георгом Кантором множества единственности (см. [616], I, с. 196), - поисков, которые не увенчались успехом. (Кантор тогда забросил гармонический анализ и – за неимением лучшего – создал теорию множеств.) Обозначим канторову лестницу через C(x). Спектр dC(x) имеет ту же общую форму, что и спектр dL(x), однако содержит, в отличие от последнего, некоторое количество случайно расположенных острых пиков неубывающего размера, из чего можно заключить, что DF=0. См. [216].

Для теории множеств единственности наличие этих пиков играет решающую роль, однако на практике они вовсе не столь значимы. В большинстве случаев при оценке спектральной плотности пики игнорируются, и в расчет принимается только общая форма спектра, определяемая размерностью D.