ДРУГИЕ ГЕОМЕТРИЧЕСКИЕ ВОПРОСЫ

Турбулентность при ясном небе. Изученные мною разрозненные источники дают возможность сделать вывод, что несущее множество этого феномена фрактально.

Поток вдоль фрактальной границы. Еще один типичный случай, в котором гидромеханике не обойтись без фракталов (см. рис. 74 и 104).

Растягивание вихрей. Движение жидкости заставляет вихри растягиваться, а растягиваемый вихрь должен сплющиваться, чтобы сохранить фиксированный объем при увеличивающейся длине. Я предполагаю, что в пределах масштабной инвариантности потока форма вихря стремится к фрактальной.

Траектория частицы в жидкости. В грубом приближении, навеянном птолемеевой моделью планетарного движения, представим себе частицу, которую несет вертикально вверх с единичной скоростью общее течение жидкости и которая испытывает возмущающее воздействие иерархии вихрей, каждый из которых совершает вращательное движение в горизонтальной плоскости. Результирующие функции x(t)?x(0) и y(t)?y(0) представляют собой суммы косинусоид и синусоид. Если высокочастотные члены очень слабы, то траектория частицы непрерывна и дифференцируема, а значит спрямляема, и ее размерность равна D=1. Если же высокочастотные члены сильны и достигают 0, то траектория фрактальна с размерностью D>1. Предположив, что вихри самоподобны, мы получаем траекторию, идентичную знаменитому пугалу математического анализа: функции Вейерштрасса (см. главы 2, 39 и 41). Это приводит нас к вопросу: можно ли связать переход всего объема жидкости в состояние турбулентности с условиями, при которых траектория движущейся в этой жидкости частицы фрактальна?