«ХОРОШО МОТИВИРОВАННАЯ» ДРОБНАЯ БРОУНОВСКАЯ МОДЕЛЬ ЗЕМНОГО РЕЛЬЕФА

Как обычно, остается только удивляться, почему модели, выбранные за простоту, оказываются столь притягательными с позиций применимости. У меня есть некоторые соображения на этот счет, однако я не питаю иллюзий относительно их убедительности (см. главу 42).

Прежде всего, можно построить функцию BH(P) так же, как мы строили B(P) - путем наложения друг на друга прямолинейных разломов (см. [380]). Однако разломы эти больше не могут иметь опасных стен; по мере приближения к дну разлома уклон стены должен увеличиваться. К сожалению, поперечное сечение такого разлома представляет собой довольно надуманную конструкцию, а стало быть, такой подход не годится.

Более предпочтительным представляется начать с броуновской модели, а затем попытаться уменьшить размерность, как это было сделано при моделировании речного стока в главе 27. Исключительно локальное сглаживание преобразует поверхность с бесконечной площадью в поверхность, площадь которой конечна. С другой стороны, эта процедура совершенно не затрагивает крупные элементы поверхности. Таким образом, локальное сглаживание заменяет объекты, имеющие одинаковую во всех масштабах вполне определенную размерность, объектами, которые демонстрируют глобальную эффективную размерность 5/2 и локальную эффективную размерность 2.

Вообще, после K различных сглаживаний с различными основными масштабами мы получаем K+1 зону с разными размерностями, связанные переходными зонами. Однако целое в этом случае может стать неотличимо от фрактала с некоторой промежуточной размерностью. Иными словами, наложение феноменов, каждый из которых обладает вполне определенным масштабом, может имитировать масштабную инвариантность.

С другой стороны, масштабно-инвариантный феномен часто самопроизвольно разлагается воспринимающим его сознанием в некую иерархию, каждый уровень которой имеет свой масштаб. Например, описанные в главе 9 скопления галактик вовсе не обязательно соответствуют реальности, как будет показано в главах 32 – 35. А значит, не стоит спешить следовать рекомендации Декарта и делить всякую сложную проблему на части. Хотя наш мозг самопроизвольно представляет геоморфологические конфигурации в виде совокупности элементов с резко различными масштабами, это вовсе не означает, что так оно и есть в действительности.

К счастью, опорной поверхностью земного рельефа является сфера, а, следовательно, ему присущ конечный внешний порог. Таким образом, мы совершенно спокойно можем допустить, что всевозможные перестройки, которым подвергалась Земля за свою долгую геологическую историю, предполагают порядок пространственных масштабов, не превышающий размеров континентов. Еще одно реалистическое допущение, заключающееся в том, что различные участки поверхности характеризуются различной величиной параметра H, позволяет этим перестройкам разниться по относительной интенсивности.