ФРАКТАЛЫ В «РЕШЕТОЧНОЙ ФИЗИКЕ»

Предыдущие рассуждения касаются далеко не только броуновского движения. В самом деле, у статистической физики имеются весьма серьезные причины заменять многие из стоящих перед ней реальных задач их аналогами, ограниченными некоторой решеткой. Можно даже, пожалуй, сказать, что почти вся статистическая физика образует некую часть более общей «решеточной физики».

Как я указывал в своих предыдущих эссе (и это было подтверждено многими исследователями), в решеточной физике в изобилии встречаются фракталы и почти фракталы. Первые представляют собой фигуры в пространстве параметров – таковы, например, упоминаемые в пояснении к рис. 125 чертовы лестницы. Вторые – это встречающиеся в реальном мире фигуры, которые не являются фракталами, так как их никоим образом нельзя интерполировать до бесконечно малых масштабов, однако они похожи на фракталы в той степени, в какой фрактальны их свойства в средних и больших масштабах. С замечательным примером такой фигуры мы встречались в главах 13 и 14 при рассмотрении бернуллиевой перколяции.

Нет нужды говорить, что я целиком и полностью убежден в том, что учащенные версии упомянутых фигур слабо сходятся к фрактальным пределам. На этом моем убеждении, собственно, и основаны рассуждения в главах 13 и 14. Физики также считают это допущение как нельзя более убедительным, несмотря даже на то, что его полное математическое доказательство, насколько мне известно, имеется только для случая броуновского движения. Исходя из вышесказанного, я склоняюсь к тому, чтобы рассматривать эти нефрактальные фигуры с предполагаемыми фрактальными пределами как решеточные фракталы. Чуть позже мы поговорим и о других важных примерах решеточных фракталов.

Можно сделать еще одно – связанное с предыдущим, но отличное от него – предположение, которое заключается в том, что реальные задачи, для которых решеточная физика предоставляет удобное упрощение, связаны с теми же (или почти с теми же) фракталами. Это предположение получило поддержку в работе [535] в отношении полимеров (которыми мы также вскоре займемся).