ЛЬЮИС ФРАЙ РИЧАРДСОН (1881 – 1953)

Даже по стандартам настоящей главы жизнь Льюиса Фрая Ричардсона необычна – составляющие ее нити разбредаются в разные стороны, и отыскать среди них какое-либо преобладающее направление совсем не просто. Заметим, между прочим, что наш герой приходится дядей знаменитому актеру сэру Ральфу Ричардсону, а сведения из его биографии почерпнуты мною из справочника «Кто есть кто в науке (с. 1420), из «Некрологов членам Королевского общества» (9, 1954, с. 217 – 235) (краткое изложение этих статей имеется в посмертных изданиях работ Ричардсона [492] и [493]), а также из очерка М. Грейзера, опубликованного в журнале «Datamation» (июнь 1980). Помимо этого, кое-какими материалами со мной любезно поделился один из родственников Льюиса Фрая Ричардсона, Дэвид Эдмундсон.

Ричардсон, как сообщает его влиятельный современник Дж. И. Тейлор, был «очень интересным и оригинальным человеком, который обо всем имел собственное мнение, почти никогда не совпадающее с общепринятым; Часто люди просто не понимали его». Научные труды Ричардсона, по свидетельству другого его современника, Э. Голда, также отличались оригинальностью, иногда за его мыслью было непросто уследить, а местами сухое изложение озарялось неожиданными яркими примерами. При чтении его работ по турбулентности и публикаций, которые впоследствии переросли в монографии [492] и [493], время от времени создается впечатление, что Ричардсон движется словно на ощупь, причем выглядит это почему-то вполне естественно и, похоже, мало его смущает. Он вторгается на неведомые земли и прокладывает себе путь с помощью отнюдь не элементарной математики, которую он изучает по мере продвижения, а не черпает из запасов, скопленных за университетские годы. Учитывая его склонность к изучению новых дисциплин (или хотя бы их «отдельных разделов»), можно только удивляться, что он вообще смог хоть чего-то достичь – то есть можно было бы удивляться, не знай мы о его поразительной организованности и трудолюбии.

Ричардсон окончил Кембриджский университет и получил степени бакалавра по физике, математике, химии, биологии и зоологии, так как был не совсем уверен, какую именно карьеру ему следует избрать. Он полагал, что Гельмгольц (который сначала был врачом, а лишь затем стал физиком) начал пир своей жизни не с того блюда.

По какой-то причине Ричардсон оказался в натянутых отношениях с кембриджской администрацией, и когда много лет спустя ему понадобилась докторская степень, он отказался получать необходимую для этого степень магистра в Кембридже (что обошлось бы ему всего лишь в десять фунтов). Вместо этого он поступил на общих правах в Лондонский университет, где он в то время преподавал, разделил скамью со студентами и в возрасте 47 лет получил степень доктора по математической психологии.

Свою карьеру Ричардсон начинал в Метеорологической службе, однако, когда после Первой мировой войны Метеорологическая служба вошла в состав только что созданного Министерства ВВС, Ричардсону, истовому квакеру и убежденному противнику войны, пришлось уйти в отставку.

Предсказание погоды с помощью численных процессов – тема одноименной монографии Ричардсона [490], впервые опубликованной в 1922 г., и яркий пример того, чем обычно занимаются фантазеры – практики. Через тридцать три года книга была переиздана как классическая, однако, в течение первых двадцати лет после выхода в свет она пользовалась весьма сомнительной репутацией. Оказалось, что аппроксимируя дифференциальные уравнения эволюции атмосферы уравнениями в конечных разностях, Ричардсон выбрал для элементарных пространственных и временных шагов неподходящие значения. Поскольку о необходимости проявлять осторожность при выборе значений таких шагов тогда еще никто не подозревал, этой ошибки едва ли можно было избежать.

Тем не менее, благодаря этому исследованию Ричардсон вскоре был избран членом Королевского общества. Кроме того, широкую известность приобрели следующие пять строчек из его книги (см. [490], с. 66):

На завитках больших пасутся малые,

На малых – еще меньшие, пожалуй;

Есть, впрочем, предел уменьшению сему,

Вязкость – достойное имя ему

(в молекулярном, конечно же, смысле).

Популярность этих строк дошла до того, что цитирующие их люди уже не считают нужным упоминать имя автора. Когда я показал это стихотворение одному специалисту по английской литературе, он тут же указал мне на его сходство с неким образцом классической поэзии. Очевидно, что стихотворение Ричардсона является пародией на следующие строки из «Рапсодии о поэзии» Джонатана Свифта (см. [549], строки 337 – 30):

Блох больших кусают блошки,

Блошек тех – малютки крошки,

Нет конца сим паразитам,

Как говорят, ad infinitum.

Ричардсон не первым обратил внимание на эти строки Свифта. У Де Моргана (см. [100], с. 377) находим альтернативный вариант (который Ричардсона, по понятным причинам, не устроил):

Блох больших кусают блошки,

Вот забава паразитам.

Блошек тех – малютки крошки,

И так дальше, ad infinitum.

Большие же блохи живут на блошищах,

В благой пребывая беспечности,

Блошищи пасутся на блохах огромных

Все больше и больше, до бесконечности.

Различия между двумя вариантами вовсе не так незначительно, как может показаться. Более того, благодаря ему возникает приятная уверенность в том, что Ричардсон очень тщательно согласовал свои литературные модели со своими физическими концепциями. В самом деле, он полагал, что при турбулентности имеет место лишь «прямой» каскад энергии, от больших завихрений к малым – отсюда и Свифт. Если бы при этом Ричардсон допускал и существование «обратного» каскада от малых завихрений к большим (некоторые современные исследователи придерживаются как раз такого мнения), то он, чем черт не шутит, спародировал бы Де Моргана!

В подобном же легком духе выдержан второй раздел статьи [491], который называется «Обладает ли ветер скоростью?» и начинается с такого предложения: «Этот глупый, на первый взгляд, вопрос при более близком знакомстве оказывается не так уж плох». Далее Ричардсон показывает, как можно исследовать диффузию воздушного потока без единого упоминания его скорости. Для того чтобы дать читателю представление о степени иррегулярности движения воздуха, бегло упоминается функция Вейерштрасса (эта функция непрерывна, но нигде не дифференцируема; она встречается в главе 2 и рассматривается более подробно в главах 39 и 41). К сожалению, он тут же оставляет эту тему и больше о ней не говорит. Таким образом, масштабная инвариантность функции Вейерштрасса от внимания Ричардсона ускользает. Ко всему прочему, как отмечает Дж. И. Тейлор, Ричардсон определил закон взаимного рассеяния частиц при турбулентности, но прошел мимо колмогоровского спектра (причем сосем рядом). И все же каждый свежий взгляд на его работы открывает их под каким-то новым углом, который раньше оставался незамеченным.

Ричардсон также известен как изобретательный и аккуратный экспериментатор. Его ранние эксперименты заключались в измерении скорости ветра в облаках посредством выстреливания в них стальных шариков различных размеров – от размера горошины до размера вишни. Для одного из более поздних экспериментов в турбулентной диффузии (см. [495]) потребовалось большое количество буев, которые должны были быть заметными издалека (то есть предпочтительно белого цвета) и в то же время не слишком торчать из воды, чтобы их не сдувало ветром. Ричардсон купил большой мешок корнеплодов пастернака, которые и были сброшены с одного из мостов через канал Кейп - Код, тогда как сам Ричардсон производил наблюдения с другого моста ниже по течению.

Много лет Ричардсон посвятил преподавательской и административной работе, причем и здесь он всякий раз норовил изобрести для решения повседневных задач свой собственный способ. Благодаря полученному наследству он смог рано уйти в отставку и наконец полностью посвятить себя изучению психологии вооруженных конфликтов между государствами – над этой темой он работал урывками еще с 1919 г. Результаты этих исследований были опубликованы посмертно в виде двух монографий [492] и [493] (в книге Ньюмена [444], с. 1238 – 1263, приводятся репринты авторских конспектов). Из посмертных статей упомянем [494] – то самое исследование длины береговых линий, которое описано в главе 5 и которое сыграло столь существенную роль в возникновении настоящего эссе.