ПРИЗНАНИЕ И ЗНАЧЕНИЕ ПРОИЗВОЛЬНОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Несомненно, многие придерживаются мнения, что береговые линии представляют собой неспрямляемые кривые, и я, если уж на то пошло, не могу припомнить, чтобы кто-нибудь считал иначе. Однако мои поиски письменных свидетельств в пользу этого мнения потерпели почти полный провал. Помимо цитат из Перрена, приведенных во второй главе, имеется еще вот такое наблюдение в статье Штейнгауза [539]: «Измеряя длину левого берега Вислы с возрастающей точностью, можно получить значения в десятки, сотни и даже тысячи раз большие, чем то, что дает школьная карта... Весьма близким к реальности представляется следующее заявление: большинство встречающихся в природе дуг не являются спрямляемыми. Это заявление противоречит распространенному мнению, сводящемуся к тому, что неспрямляемые дуги — математическая фикция, а в природе все дуги спрямляемы. Из этих двух противоречивых заявлений верным, по всей видимости, следует считать все же первое». Однако ни Перрен, ни Штейнгауз так и не удосужились разработать свои догадки подробнее и довести их до логического конца.

К. Фадиман рассказывает одну занятную историю. Его друг Эдвард Каснер несколько раз проводил такой эксперимент: он «спрашивал у маленьких детей, какова, по их мнению, общая длина побережья Соединенных Штатов. После того, как кто-то из детей высказывал достаточно «разумное» предположение,... Каснер... предлагал им подумать о том, насколько можно увеличить эту цифру, если очень тщательно измерить периметр всех мысов и бухт, затем так же тщательно проследить меньшие мыски и бухточки в каждом из этих мысов и в каждой из этих бухт, затем измерить каждый камешек и каждую песчинку из тех, что образуют береговую линию, каждую молекулу, каждый атом и т. д. Получалось, что берег может быть каким угодно длинным. Дети понимали это сразу, а вот со взрослыми у Каснера возникали проблемы.» История, конечно, очень мила, однако вряд ли она имеет отношение к моим поискам. Каснер явно не ставил перед собой цель выделить некий аспект реальности, достойный дальнейшего изучения.

Таким образом, можно сказать, что статья [356] и книга, которую вы держите в руках, представляют собой по существу первые работы, посвященные этой теме.

В своей книге «Воля верить»1 Уильям Джеймс пишет: «То, что не укладывается в рамки классификаций... всегда являет собой тучную ниву для великих открытий. В любой науке вокруг общепризнанных и упорядоченных фактов вечно кружит пыльное облако исключений из правил — явлений малозаметных, непостоянных, редко встречающихся, явлений, которые проще игнорировать, нежели рассматривать. Всякая наука стремится к идеальному состоянию замкнутой и строгой системы истин... Феномены, не подлежащие классификации в рамках системы, считаются парадоксальными нелепостями и заведомо не истинны. Ими пренебрегают и их отвергают, исходя из лучших побуждений научной совести... Тот, кто всерьез займется иррегулярными феноменами, окажется способен создать новую науку на фундаменте старой. По завершении же этого процесса правилами обновленной науки по большей части станут вчерашние исключения».

Настоящее эссе, скромной целью которого является полное обновление геометрии Природы, описывает феномены, настолько не вписывающиеся в классификацию, что говорить о них можно лишь с позволения цензуры. С первым из таких феноменов вы встретитесь уже в следующем разделе.