РИС. 101 И 102. ПРОХОЖДЕНИЯ КВАДРАТА И ДРАКОНА

Генератор здесь тот же, что и для предыдущих кривых, однако незначительные, на первый взгляд, изменения в других правилах оказывают значительное влияние на результат.

Прохождение квадрата по Пеано, более поздний вариант.

Инициатор отрезок [0, 1], а второй, четвертый и шестой этапы построения выглядят следующим образом:

Эффективность. Экстремальное свойство. Эта кривая заполняет область, площадь которой равна 1, тогда как кривые на рис. 98 и 99, а также кривая дракона, которую мы рассмотрим ниже, покрывают лишь 1/2 или 1/4. Если терагоны лежат на прямоугольной решетке, покрываемая ими область не может превышать 1. Этого максимума она достигает лишь в случае терагонов без самопересечений. Иными словами, отсутствие самокасаний важно не только с эстетической точки зрения, а самокасающаяся кривая со срезанными точками самокасаний (как на рис. 95) не становится от этого эквивалентной кривой Коха без самопересечений.

Взяв только нечетные этапы построения данного прохождения квадрата и соединив средние точки последовательных отрезков терагонов (чтобы избежать самокасаний), мы возвратимся к кривой Пеано, вариант Гильберта.

Рис. 102. Кривая, заполняющая прямоугольную трапецию. Изменим генератор таким образом, чтобы он представлял собой ломаную, составленную из двух неравных отрезков под прямым углом друг к другу. Избегающее самопересечений построение аналогично построению кривой на предыдущем рисунке.

Дракон Хартера-Хейтуэя. (См. [162] и [95].) Инициатор — отрезок [0, 1], генератор — как в начале пояснения к рис. 98. Генератор поочередно занимает правое и левое положение относительно терагона. Единственное отличие от построения прохождения треугольника по Пойа заключается в том, что на всех этапах построения генератор помещается справа от начального отрезка кривой. Ниже показаны третий и четвертый этапы построения:

Последствия этого незначительного изменения выглядят весьма впечатляюще:

На этой иллюстрации нельзя различить саму кривую, мы видим лишь ее границу, которая называется кривой дракона. Таким образом, эта кривая Пеано имеет полное право называться прохождением дракона. Как и любая другая кривая Коха, инициатором которой служит отрезок [0, 1], дракон самоподобен. Кроме того, отчетливо видно, что дракон разделен на части, соединяющиеся между собой тонкими переходами. Эти части подобны друг другу, но не целому дракону.

Двойной дракон. Во «Фракталах» 1977 года отмечалось, что при таких «драконовских» правилах построения данной кривой более естественным инициатором представляется последовательность отрезков [0, 1] и [1,0]. Фигуру, которую в итоге заполняет кривая, я назвал двойным драконом. Эта фигура получила числовое представление в [272]. Выглядит она вот так (один дракон — черный, другой — серый):

Река двойного дракона. Стерев (ради удобства рассмотрения) мелкие притоки, получим древовидную реку двойного дракона:

Двойного дракона можно разбить на его уменьшенные подобия

Шкура двойного дракона. Шкура представляет собой кривую Коха со следующим генератором:

Размеры длинного и короткого отрезков составляют соответственно r1=1/?2 и r2=(1/2)/?2=r13. Следовательно, генерирующая размерность функция имеет вид (1/?2)D+(1/2?2)D=1, а величина x=2D/2 удовлетворяет x3?x2?1=0.

Другие драконы. (См. [95].) Возьмем некоторую бесконечную последовательность x1,x2,..., где каждый xk может быть либо 0, либо 1, и воспользуемся значением xk для определения положения генератора при начальном отрезке на k-м этапе построения: если xk=1, то первый генератор расположен справа, если же xk=0, то первый генератор расположен слева. Каждая такая последовательность породит нового дракона.

Рис. 104 и 105. ПРОХОЖДЕНИЯ СНЕЖИНОК: НОВЫЕ КРИВЫЕ И ДЕРЕВЬЯ ПЕАНО (РАЗМЕРНОСТЬ ВОДОРАЗДЕЛОВ И РЕК D~1,2618)

На этих иллюстрациях представлено семейство кривых Пеано моего собственноручного изготовления. Они заполняют оригинальную снежинку Коха (см. рис. 74); тем самым оказываются сведены нос к носу два главных чудовища начала века.

Более важное их достоинство заключается в том, что одного взгляда на них достаточно для подтверждения справедливости одного из основных положений настоящего эссе: кривые Пеано ни в коем случае не являются математическими чудовищами, не допускающими никакой конкретной интерпретации. При отсутствии самокасаний кривые Пеано дают ясно видимую и легко интерпретируемую картину скопления сопряженных деревьев. Эти деревья представляют собой хорошие модели первого порядка для рек, водоразделов, настоящих деревьев и кровеносной системы человека.

Ко всему прочему, мы получаем здесь и замечательный побочный продукт: способ разбиения снежинки на меньшие неравные снежинки.

Семизвенный генератор. Инициатор остается неизменным [0,1], а генератор и второй этап построения выглядят следующим образом:

Чтобы быть более точными, обозначим изображенный выше генератор буквой S и назовем его прямым. Определим зеркальное отражение генератора S относительно прямой x=1/2 как обратный генератор F. На любом этапе построения прохождения снежинки можно использовать как S-, так и F-генераторы, на выбор. То есть каждая бесконечная последовательность символов S и F даст в результате новую кривую, заполняющую снежинку.

Сглаженные терагоны. Ломаные линии выглядят несколько грубовато, но вот если представить каждый отрезок в виде дуги в одну шестую окружности, то заполняющие снежинку терагоны будут выглядеть изотропными и вообще гораздо более «естественными».

Рис. 74. Давным-давно, еще на рис. 74, мы использовали продвинутый терагон семизвенного прохождения снежинки, сглаженного и закрашенного, для заполнения озера волнующейся водой. Теперь, когда мы снова рассматриваем эту картину, она ассоциируется у нас с жидкостью, текущей вдоль фрактальной границы, причем хорошо различимы два приблизительно параллельных потока, движущиеся с различными скоростями.

Тринадцатизвенный генератор. Изменим предыдущий генератор, состоящий из семи отрезков, заменив его пятое звено на уменьшенную копию всего генератора. Эта копия также может иметь S- и F- варианты. В последнем случае получим следующие генератор и второй этап построения:

Рис. 104. Этот продвинутый терагон, изображенный в виде границы между двумя причудливо переплетенным областями, лучше всяких слов объясняет значение термина «заполнение плоскости».

Рис. 105. Сгладим построенный выше 13-звенный генератор. Сгладим также и снежинку Коха. Первые этапы получаемого в результате построения приведены на рис. 105.

Размерности рек. Каждая отдельная река в оригинальной кривой Пеано имеет конечную длину и, как следствие, размерность 1. В данном случае размерность отдельных рек равна ln4/ln3. Для достижения размерности 2, все реки нужно рассматривать в совокупности.

Рис. 106 и 107. КРИВАЯ ПЕАНО-ГОСПЕРА. ЕЕ ДЕРЕВЬЯ И АНАЛОГИЧНЫЕ ДЕРЕВЬЯ КОХА (РАЗМЕРНОСТЬ ВОДОРАЗДЕЛОВ И РЕК D~1,1291)

К рис. 75. На этом рисунке не получившие в свое время объяснения тонкие ломаные линии представляют собой начальные этапы построения (с 1-го по 4-й) кривой Пеано в интерпретации Госпера (см. [163]). Это — первая кривая Пеано без самопересечений, полученная только методом Коха, без дальнейшей доработки.

Инициатор — отрезок [0, 1]. Генератор —

Если развернуть генератор против часовой стрелки так, чтобы его первое звено заняло горизонтальное положение, то становится видно, что он является частью треугольной решетки, занимая на ней 7 из 3х7 звеньев. Благодаря этой особенности треугольные решетки приобретают свойство, аналогичное описанному на с. 101 свойству квадратных решеток.

Теперь мы можем убедиться в том, что данная кривая Пеано действительно заполняет фигуру, ограниченную кривой Коха на рис. 75. Линия переменной толщины внутри кривой Коха на рис. 75 представляет собой результат пятого этапа настоящего построения.

Рис. 106, слева. Четвертый терагон кривой Госпера, перерисованный в виде границы между черной и белой областями.

Рис. 106, справа. Деревья рек и водоразделов. Изображены реки и водоразделы, проходящие по средним линиям черных и белых «пальцев» кривой, показанной на этом же рисунке слева.

Рис. 107, вверху. Мы взяли древовидную структуру рек и водоразделов, показанную на рис. 106 справа, и привели толщину линий в соответствие с их относительной значимостью в схеме Хортона-Штралера (см. [297]). В настоящем примере каждой кривой (и рекам, и водоразделам) назначается ширина, пропорциональная ее длине по прямой. Реки даны черным, водоразделы — серым.

Размерности. Каждая кривая Пеано определяет размерность D собственной границы. На рис. 95 и 98 указанная граница представляет собой просто квадрат. На последующих рисунках появляются драконова шкура и кривая-снежинка. Здесь же мы имеем дело с фрактальной кривой, размерность которой D~1,1291 и которая состоит отчасти из рек, отчасти из водоразделов. Все другие реки и водоразделы сходятся к кривой с фрактальной размерностью D=1,1291.

Франция. Тому, кто, будучи школьником, часто разглядывал карту бассейнов Луары и Гаронны, наши иллюстрации наверняка о многом напомнят.

Рис. 107, внизу. Дерево рек, построенное непосредственно с помощью каскада Коха. Когда сам генератор имеет древовидную структуру, он порождает при построении дерево. Пусть, например, генератор выглядит вот так:

Получаем еще один способ осушения внутренней области кривой Коха с рис. 75. (Ветви, расположенные у самых «истоков», были обрезаны.)