ПУАНКАРЕ И ФРАКТАЛЬНЫЕ АТТРАКТОРЫ

Этот раздел, в противоположность другим разделам настоящей главы, посвящен открытиям, которые не просто оказались занимательны, но и оказали непосредственное и долговременное воздействие на мою работу. Когда «Фракталы» 1977 г. пребывали уже на стадии корректуры, мое внимание привлекли кое-какие тексты Анри Пуанкаре (1854 – 1912), подтолкнувшие меня к новым направлениям в исследованиях, вкратце описанным в главах с 18 по 20 (полный отчет об этих исследованиях я планирую вскоре представить вашему вниманию). Позвольте мне ответить здесь на некоторые вопросы, которые с неизбежностью возникают при чтении этих (и связанных с ними) работ Пуанкаре.

«Да» и «нет»: Пуанкаре определенно был первым исследователем фрактальных («странных») аттракторов. Однако ничто из того, что мне известно о его трудах, не делает его даже отдаленным предтечей фрактальной геометрии доступных взгляду проявлений Природы.

«Да»: Об этом факте никто уже не помнит, но меньше, чем за год до выхода в свет статьи Кантора [62] (1883) ортодоксальные математики познакомились с предложенными Пуанкаре множествами, близкими к троичной пыли и функции Вейерштрасса, и произошло это задолго до создания революционных теорий множеств и функций вещественного переменного.

«Нет»: В те времена подобные разработки незамеченными не оставались. Они вошли в теорию автоморфных функций (см. главу18), прославивших Пуанкаре и Клейна. В этом же направлении работал и Поль Пенлеве (1863 – 1933), ученый, к которому прислушивались и люди, далекие от чистой математики. Пенлеве интересовался инженерным делом (он был первым пассажиром Уилбера Райта после несчастного случая с Орвиллом Райтом), а затем решил заняться политикой и даже побывал премьер-министром Франции. Кстати, обнаружив, что близким другом Пенлеве был Перрен, я склонен думать, что «мечтания», упомянутые во второй главе, не так уж оторваны от жизни.

«Да»: Кантор и Пуанкаре оказались, в конце концов, по разные стороны интеллектуальных баррикад – причем от едкого сарказма Пуанкаре пострадали и Кантор, и Пеано; чего стоит хотя бы вот такое знаменитое замечание Пуанкаре: «Канторизм обещает нам радости врача, исследующего интересный патологический случай». (См. также подраздел ЭРМИТ, с. 578.) Поэтому мне представляется уместным привести здесь свидетельство того, что когда возникла такая необходимость, Пуанкаре признал-таки, что присутствие классических чудовищ можно допустить пусть и не при описании видимой природы, но хотя бы в абстрактной математической физике. Ниже приводятся в моем вольном переводе выдержки из «Новых методов небесной механики» Пуанкаре ([477], том III, с. 389 – 390).

«Попробуем представить себе рисунок, образуемый двумя кривыми [C' и C"], соответствующими дважды асимптотическому решению задачи о трех телах. Точки их пересечения образуют нечто вроде бесконечно плотной … решетки. Каждая кривая нигде не пересекает самое себя, однако должна изгибаться весьма сложным образом для того, чтобы бесконечно часто пересекать каждый узел решетки.

Кривая эта, должно быть, поразительно сложна, и я даже не стану пытаться изобразить ее. Вряд ли что-либо другое может дать нам лучшее представление о сложности задачи о трех телах или вообще любой задачи динамики, для которой не существует полного набора интегралов …

Перечислим возможные предположения:

1) Множество S' (или S''), определяемое как кривая C' (или C'') плюс ее предельные точки заполняет полуплоскость. Если так, то Солнечная система неустойчива.

2) Множество S' (или S'') имеет положительную и конечную площадь и занимает ограниченную область плоскости с возможными "пустотами" …

3) И наконец, площадь множества S' (или S'') обращается в нуль. В этом случае мы имеем дело с аналогом канторовой пыли».

С целью укрепить впечатление, оставляемое этими незаслуженно забытыми строками, приведу еще несколько цитат (опять же в моем вольном переводе) из Адамара [187], Пенлеве [459] и Данжуа [101, 102].

Адамар: «Пуанкаре можно считать предтечей теории множеств в том смысле, что еще прежде, чем она была создана, он применил ее в одном из своих самых поразительных и наиболее справедливо знаменитых исследований. В самом деле, он показал, что особенности автоморфных функций образуют либо полную окружность, либо канторову пыль. Что касается последней категории, то у предшественников Пуанкаре не достало воображения даже представить себе что-либо подобное. Упомянутое множество представляет собой одно из важнейших достижений теории множеств, однако Пуанкаре опередил здесь и Бендикссона, и даже самого Кантора.

Примеры кривых, не имеющих касательных ни в одной точке, стали уже благодаря Риману и Вейерштрассу классическими. Существуют, однако, вполне очевидные различия между, с одной стороны, фактом, установленным посредством умственных упражнений развлекательного характера, проделанных с единственной целью, заключающейся в доказательстве принципиальной возможности установления этого самого факта – очередного экспоната на выставке чудовищ – и, с другой стороны, тем же фактом, но вытекающим из теории, которая опирается на самые обычные и простые задачи, составляющие самую сущность анализа».

Пенлеве: «Я должен настаивать на тех отношениях, что сложились на данный момент между теорией функций и канторовыми пылями. Последние построения были в свое время настолько новы по духу, что не у всякого редактора математического журнала доставало отваги публиковать исследования на эту тему. Многие читатели полагали такие исследования скорее философскими, нежели научными. Однако прогресс математики показал несостоятельность подобных суждений. В 1883 г. (году, дважды знаменательном для истории математики XIX в.) в «Acta Mathematica» поочередно публиковались работы Пуанкаре по функциям Фукса и Клейна и работы Кантора».

Упомянутые работы Кантора, помещенные на с. 305 – 414 второго тома «Acta» (само множество попало на с. 407), являются переводами на французский, выполненными при поддержке Миттаг – Леффлера, тогдашнего редактора «Acta», желающего помочь Кантору в борьбе за признание. Некоторые из них (см. подраздел ЭРМИТ, на с. 578) редактировал Пуанкаре. Однако еще прежде, чем работы Кантора вышли на немецком языке, Пуанкаре уже опубликовал в «Comptes Rendus» вкратце свои результаты. Пуанкаре настолько быстро воспринял одно из нововведений Кантора, что в своей первой статье в «Acta» именовал множества исключительно немецким термином Mengen, не желая тратить время на поиски французского эквивалента.

И наконец, Данжуа [101]: «Некоторые ученые разделяют истины на две категории: одни истины со вкусом одеты, хорошо образованны и воспитаны в соответствии с приличиями, для других же дверь дома джентльмена должна оставаться закрытой. Я говорю о теории множеств, которая, тем не менее, открывает перед нами целую новую Вселенную, несравненно более обширную и менее искусственную, более простую и логичную, более пригодную для моделирования физической Вселенной – одним словом, более истинную, чем известная нам Вселенная.

Канторова пыль обладает многими свойствами непрерывной материи и демонстрирует весьма глубокое соответствие реальности».

В другой работе ([102], с. 23) Данжуа пишет: «Я считаю очевидным, что разрывные модели гораздо более удовлетворительно и успешно, нежели модели общепринятые, объясняют целый ряд естественных феноменов. И поскольку о законах разрывности известно гораздо меньше, чем о законах непрерывности, первые следует изучать как можно более широко и подробно. Когда степени понимания обоих родов законов сравняются, физики получат возможность применять тот или другой подход в соответствии с текущей необходимостью».

К сожалению, Данжуа не подкрепляет эти «мечтания» никакими конкретными разработками, ограничиваясь общими местами из Пуанкаре и Пенлеве. Исключение, пожалуй, составляет лишь его работа по дифференциальным уравнениям на поверхности тора (1932). Отвечая на вопрос, поставленный Пуанкаре, Данжуа показывает, что пересечение решения и меридиана может представлять собой весь меридиан или любую заданную канторову пыль. Первый случай – в отличие от последнего – согласуется с физическим понятием эргодического поведения. Аналогичный пример приводит Боль в 1916 г.

Жак Адамар (1865 – 1963) был знаменитым математиком и специалистом в математической физике, а Арно Данжуа (1884 – 1974) – выдающимся математиком-теоретиком и не имел среди физиков никакого веса. Так или иначе, их мысли не нашли в то время отклика. Оба отдали дань уважения Пуанкаре и Пенлеве, возродив идеи, которые их авторы так и не удосужились подкрепить повторением.