КРИВЫЕ. ТОПОЛОГИЧЕСКАЯ РАЗМЕРНОСТЬ

До сих пор мы, не особенно задумываясь, называли фигуру Коха K кривой; настало время разобраться с этим понятием. Здравый смысл подсказывает, что стандартная дуга представляет собой связное множество, причем если удалить любую его точку, то множество становится несвязным. А замкнутая кривая — это связное множество, разделяющееся после удаления двух точек на две стандартные дуги. По этим причинам фигуру Коха K можно считать кривой.

Любой математик скажет вам, что все фигуры, обладающие вышеуказанным свойством (будь то кривая K, интервал [0,1] или окружность), имеют топологическую размерность DT, равную 1. То есть у нас появляется еще одна концепция размерности! Будучи последователями Уильяма Оккама, все ученые прекрасно осведомлены о том, что «не следует множить сущности без необходимости». Здесь я должен признаться, что наши с вами метания между несколькими почти эквивалентными формами фрактальной размерности объясняются всего лишь соображениями удобства. А вот параллельное существование фрактальной и топологической размерности является самой что ни на есть суровой необходимостью. Читателям, пропустившим то отступление в главе 3, где дано определение фрактала, я рекомендую прочесть его сейчас; кроме того, каждому необходимо ознакомиться с разделом, озаглавленным РАЗМЕРНОСТЬ, в главе 41.