H>½: ДОЛГОВРЕМЕННАЯ (БЕСКОНЕЧНО ДОЛГАЯ) ПЕРСИСТЕНТНОСТЬ И НЕПЕРИОДИЧЕСКИЕ ЦИКЛЫ

Существенное свойство функции BH(t) в случае H>? заключается в весьма особенном поведении персистентности ее приращений: она распространяется на бесконечно долгий срок. Следовательно, связь между ДБД и феноменом Херста подразумевает, что персистентность, наблюдаемая в гидрологической статистике, не ограничена короткими временными интервалами (такими, например, как срок службы фараоновых министров) и даже на тысячелетия. Степень персистентности измеряется параметром H.

Персистентность весьма ярко проявляет себя на графиках приращений функции BH(t) и в статистике объемов годового стока рек, каковую статистику и моделируют эти приращения. Почти все выборки выглядят как «случайные шумы» на некотором фоне, проходящие несколько циклов вне зависимости от длины выборки. Однако эти циклы не являются периодическими, т.е. их нельзя экстраполировать при увеличении длины выборки. Кроме того, в такой выборке можно часто наблюдать некий основополагающий тренд, который вовсе не обязательно продолжится в экстраполяции.

Эти наблюдения становятся еще интереснее, если учесть, что аналогичное поведение статистических выборок часто наблюдается в экономике: излюбленным занятием экономистов является разложение любого набора данных на тренд, несколько циклов и шум. Такое разложение призвано облегчить понимание основополагающих механизмов экономики, однако, как мы только что увидели на примере ДБД, и тренд, и циклы могут быть порождены шумом, который сам по себе ничего не значит.

Интерполяция. В том случае, когда обыкновенная броуновская функция B(t) известна в моменты времени t1,t2,... (не обязательно равностоящие), ожидаемые значения B(t) между этими моментами вычисляются с помощью линейной интерполяции. В частности, интерполяция на интервале [tj,tj?1] зависит исключительно от значений BH в моменты tj и tj+1. И напротив, во всех случаях H?? интерполяция функции BH(t) нелинейна и зависит от всех tm и от всех BH(tm). При увеличении значения tm?tj влияние BH(tm) уменьшается, но медленно. Таким образом, интерполяцию функции BH можно описать как глобальную. Случайные кривые срединного смещения, рассмотренные в главе 26, ведут себя совершенно иначе, поскольку их интерполяции линейны на определенных временных интервалах. В этом и заключается самая суть различия между двумя упомянутыми процессами.