ЗАВИСИМОСТЬ МАССЫ ОТ РАДИУСА

Величина ?t в качестве коэффициента подобия характерна для большинства аспектов броуновского движения. Например, если измерить по прямой расстояние, которое покрывает броуновское движение за время t, то мы получим случайную величину, кратную ?t. Аналогичным образом и общее время, проведенное броуновской точкой внутри окружности радиуса R с центром в точке B(0)=0, представляет собой случайную величину, кратную R2.

Определив величину, пропорциональную времени, затраченному броуновским следом на прохождение того или иного своего участка, как «массу», а затем «взвесив» эти самые участки, мы обнаружим, что – как в плоскости, так и в пространстве (E?2) - общая масса, заключенная внутри окружности радиуса R, определяется соотношением M(R)?R2.

Формально это соотношение полностью идентично тому, что мы получили для кривых Коха (глава 6) или канторовой пыли (глава 8). И тем более идентично соотношению для классических случаев интервала, диска или шара однородной плотности.