КОМПЬЮТЕРНАЯ МОДУЛЯРНАЯ ГЕОМЕТРИЯ

Рассмотрим еще одну иллюстрацию соотношения между площадью и объемом, на этот раз в компьютерном аспекте. Компьютеры не являются естественными системами, но это не должно нас останавливать. Этот и некоторые другие прецеденты призваны продемонстрировать, что с помощью фрактальных методов можно, в конечном счете, описать любую естественную или искусственную «систему», состоящую из отдельных «элементов», самоподобно связанных между собой (кроме того, приоритетными в системе должны являться не свойства элементов, а правила их соединения).

Сложные компьютерные системы, как правило, разделены на многочисленные модули. Каждый состоит из некоторого большого числа C компонентов и связан со своим окружением некоторым большим числом T соединений. Оказывается, что T1/D?C1/E с точностью до нескольких процентов. (Причина необычного написания показателей прояснится чуть ниже.) В корпорации IBM это правило приписывают Э. Ренту (см. также [288]).

Согласно предварительным данным, D/E=2/3; это же значение Р. У. Киз [264] экстраполирует на гигантские «схемы» нервной системы (оптический нерв и мозолистое тело). Однако с ростом эффективности системы отношение D/E увеличивается. Эффективность, в свою очередь, отражает степень параллелизма, заложенную в систему. В частности, конструкции с крайними показателями характеризуются крайними значениями D. В сдвиговом регистре модули выстроены в ряд и T всегда равно 2, независимо от C: следовательно, D=0. При интегральном параллелизме каждый компонент требует отдельного соединения, т. е. T=C, или D=E.

Объясняя значение D/E=2/3, Киз отмечает, что компоненты, как правило, размещены в пределах объема модуля, тогда как соединения проходят через их поверхности. Чтобы показать, что это наблюдение имеет самое непосредственное отношение к правилу Рента, достаточно допустить, что все компоненты имеют приблизительно одинаковые объем v и площадь поверхности ?. Так как C — это общий объем модуля, деленный на v, величина C1/3 будет приблизительно пропорциональна радиусу модуля. С другой стороны, T — это общая площадь поверхности модуля, деленная на ?, т. е. величина T1/2 также будет приблизительно пропорциональна радиусу модуля. Правило Рента всего лишь выражает эквивалентность двух различных мер радиуса в стандартной пространственной фигуре. E=3 — это евклидова размерность модуля, a D=2 — размерность стандартной поверхности.

Следует сказать, что понятие модуля весьма неоднозначно, его даже можно считать неопределенным, однако правилу Рента это ничуть не мешает, пока подмодули в модуле соединяются друг с другом поверхностями.

Так же легко интерпретируются и крайние случаи, упомянутые выше. В стандартной линейной структуре E=1, а граница между компонентами сводится к двум точкам; следовательно, D=0. В стандартной плоской структуре E=2, a D=1.

Однако когда отношение E/D не равно ни 3/2, ни 2/1, ни 1/0, стандартная евклидова геометрия не позволяет интерпретировать величину C как объем, а T — как площадь. Между тем, такие интерпретации имеют значительную практическую ценность — и не составляют никакой сложности для геометрии фрактальной. Для пространственной схемы, контактирующей с внешним миром всей своей поверхностью, E=3, a D может принимать любое значение между 2 и 3. Для плоской схемы, контакт которой с внешним миром осуществляется по всей длине ограничивающей ее кривой, E=2, a D может принимать любое значение между 1 и 2. Случай интегрального параллелизма D=E подразумевает, что граница имеет форму кривой или поверхности Пеано. Кроме того, если граница используется не полностью, «эффективной границей» может стать любая поверхность, размерность D которой находится в интервале от 0 до E.

Рис. 169. ОБЛАКА (о) И ЗОНЫ ДОЖДЕЙ (•). ГРАФИК ЗАВИСИМОСТИ ПЕРИМЕТРА ОТ ПЛОЩАДИ В ДВОЙНОМ ЛОГАРИФМИЧЕСКОМ МАСШТАБЕ (РИСУНОК ВЗЯТ ИЗ [319].)