КОГДА «ВЫСТАВКА ЧУДОВИЩ» СТАНОВИТСЯ МУЗЕЕМ НАУКИ

Часть из тех мечтаний, относящаяся к броуновскому движению, и впрямь воплотилась в реальности еще при жизни Перрена. Случилось так, что его статья [469] привлекла внимание Норберта Винера, причем восторженный и удивленный Винер тут же решил должным образом исследовать и строго определить недифференцируемую первую модель броуновского движения ([595], с. 38-39 или [596], с. 2-3).

Эта модель до сих пор сохраняет свое значение, хотя физики и указывают на то, что ее недифференцируемость проистекает из злостной идеализации, а именно — из пренебрежения инерцией. Поступая так, физики поворачиваются спиной к наиболее существенному для данного труда свойству модели Винера.

Что касается других предсказываемых Перреном применений математических исследований в физике, то до сегодняшнего дня никто даже не пытался этим заниматься. Собрание множеств, о которых упоминал Перрен (кривые Вейерштрасса, канторова пыль и подобные им), до сих пор остается предметом изучения «чистой математики».

Некоторые авторы (например, Виленкин [573]) называют это собрание «Музеем математических искусств», не подозревая (я уверен), насколько точно и полно доказываются эти слова в данном эссе. Из первой главы мы помним, что кое-кто (начиная еще с Анри Пуанкаре) предпочитает использовать для упомянутого собрания словосочетание «Выставка чудовищ» — подобно Джону Валлису с его «Трактатом об алгебре» (1685), где четвертое измерение было описано как «чудовище в Природе, не более возможное, чем химера либо кентавр».

Одна из задач настоящего эссе состоит в том, чтобы посредством беспристрастного рассмотрения всевозможных явных «случаев» показать читателю, что та же самая «Выставка» с полным правом может называться «Музеем науки».

Можно только похвалить математиков за то, что они в столь давние времена додумались до первых из упомянутых множеств; однако то, что те же математики так долго отпугивали нас от этих множеств, достойно всяческого осуждения.

В процитированных во второй главе вдохновенных словах Жана Перрена описывается форма «белых чешуек, которые образуются при добавлении соли в раствор мыла». Помещенные здесь рисунки иллюстрируют замечания Перрена.

Спешу заверить вас, что эти иллюстрации не являются ни фотографиями, ни смоделированными с помощью компьютера изображениями каких бы то ни было реальных объектов, будь то чешуйки мыла, дождевые облака, тучи вулканического пепла, астероиды или медные самородки.

Они также не претендуют на то, чтобы считаться продуктом теории, описывающей различные аспекты образования реальных чешуек — химические, физико-химические и гидродинамические.

Более того, они вообще не имеют никакого отношения к каким бы то ни было научным принципам. Это — полученные с помощью компьютера изображения, призванные по возможности наглядно проиллюстрировать некоторые геометрические характеристики, которые, как мне показалось, присутствуют в описании Перрена, и которые я смоделировал, используя понятие фрактала.

Рис. 25 и 26. ИСКУССТВЕННЫЕ ФРАКТАЛЬНЫЕ ЧЕШУЙКИ

Эти чешуйки существуют только в памяти компьютера. Насколько мне известно, никто и никогда не создавал их реальных моделей. Затенение также считал компьютер.

Построение таких чешуек описывается в главе 30. Видимые невооруженным глазом различия между ними объясняются разными значениями параметра D, которые указаны над рисунками. Этот параметр, называемый фрактальной размерностью и являющийся ключевым понятием настоящего труда, вводится в главе 3. Похожесть общих очертаний фигур во всех трех случаях объясняются смещением, которое является результатом аппроксимации и обсуждается в пояснении к рис. 372 и 373.

Более ранняя версия этих иллюстраций странно напоминала якобы фотографию лохнесского чудовища. Можно ли считать подобное сходство случайным совпадением?

В статье [469] физическое броуновское движение описывается следующим образом: «Все части находящейся в состоянии равновесия жидкой массы (такой, например, как вода в стакане), представляются нам совершенно неподвижными. Если поместить в нее объект с большей плотностью, то он опустится вниз. Скорость этого падения, разумеется, будет тем меньше, чем меньше объект, и все же в конце концов любой видимый объект опускается на дно сосуда и не проявляет стремления вновь подняться на поверхность. Однако, наблюдая за взвесью в жидкости очень мелких частиц, нетрудно заметить, что их движение абсолютно беспорядочно. Они движутся, останавливаются, снова начинают движение, взбираются вверх, опускаются, снова поднимаются и совершенно не желают оставаться неподвижными».

В качестве иллюстрации приводится один из многих изображающих этот естественный феномен рисунков из книги Перрена «Атомы» [470]. На нем изображены четыре индивидуальные траектории движения коллоидной частицы радиуса 0,53?, полученные с помощью микроскопа. Через каждые 30 секунд на координатной сетке отмечались последовательные положения частицы (шаг сетки 3,2?), которые соединялись затем прямыми (эти прямые, таким образом, не имеют никакого физического смысла).

Продолжим наш вольный перевод из Перрена [469]. «Может возникнуть искушение определить «среднюю скорость частицы», как можно точнее последовав за ней по ее извилистому пути. Однако подобная оценка окажется в корне неверной. И величина, и направление видимой средней скорости частицы изменяются самым безумным образом. Рисунок дает лишь слабое представление об изумительной запутанности реальной траектории. Если бы положения частицы регистрировались в 100 раз чаще, то вместо каждого отрезка прямой мы получили бы ломаную, столь же сложную как и исходный рисунок, хотя и меньших размеров — и так далее. Нетрудно убедиться, что на практике понятие касательной в применении к таким кривым является полной бессмыслицей».

Автор настоящего эссе разделяет мнение Перрена, однако рассматривает неправильность под несколько иным углом. Мы подчеркиваем тот факт, что при последовательном увеличении разрешения микроскопа, длина траектории наблюдаемого броуновского движения возрастает до бесконечности (см. главу 25).

Кроме того, след, оставляемый броуновской частицей, в конце концов почти заполняет всю плоскость. Разве не напрашивается вывод, что в каком-то смысле (смысл этот нам еще предстоит отыскать) размерность этой необычной кривой должна совпадать с размерностью плоскости? Самое интересное — так оно и есть. Одна из главных задач этой книги заключается в том, чтобы показать, как расплывчатое понятие размерности расщепляется на несколько вполне определенных составляющих. Топологически след движения броуновской частицы является кривой (размерность 1). Однако так как он способен заполнить практически всю плоскость, то во фрактальном смысле его размерность равна 2. Расхождение между этими двумя величинами дает броуновскому движению право называться, согласно вводимой ниже терминологии, фракталом.

Рис. 29. ФИЗИЧЕСКОЕ БРОУНОВСКОЕ ДВИЖЕНИЕ. КЛАССИЧЕСКИЕ ЗАРИСОВКИ ЖАНА ПЕРРЕНА