УПРАВЛЕНИЕ СУККОЛЯЦИЕЙ С ПОМОЩЬЮ КРИТИЧЕСКОЙ РАЗМЕРНОСТИ Dкрит ОБОБЩЕННЫХ ТРЕМА – ФРАКТАЛОВ

В одном из разделов главы 34 показано, что если фрактал «почти» перколирует (т.е. он принадлежит к некоторому семейству с вполне определенной критической размерностью Dкрит, а его собственная размерность D «всего лишь чуть-чуть» ниже критической), то следует ожидать, что его структура будет перистой. Иными словами, требуемые размерность D и интенсивность перистости структуры могут быть достигнуты совместно, если среди параметров модели числятся одновременно и D, и Dкрит.

В случае трема - фрактала параметрами являются вещественное число D и некоторая функция, задающая трема – генератор. Позвольте мне продемонстрировать, что размерность Dкрит является ничем иным, как функцией от этого последнего параметра: можно добиться того, что ее значение окажется произвольно близко к E, а если E>2, то можно сделать так, что размерность Dкрит будет произвольно близка к 1.

Случай, когда критическая размерность Dкрит произвольно близка к E. Для реализации такой размерности достаточно взять в качестве генератора произвольно тонкую иглу или плоский блин с фиксированной формой, но изотропно ориентированными осями (см. рис. 446). Для доказательства этого утверждения в случае плоскости (E=2) заметим, что при заданном произвольном значении D<2 размеры и направление трем, а также расположение их центров можно выбирать только сообразуясь с коэффициентом плоскостности генератора. Далее рассмотрим квадрат со стороной L, а все тремы разделим на три группы: средние тремы (площади трем меньше ?L2/10, но больше ??2), большие тремы и малые тремы. В случае, когда величина D много больше Dкрит (по отношению к дискообразным тремам), а тремы представляет собой едва сплющенные диски, картина напоминает ту, что мы видели в главе 33: средние тремы, по большей части, образуют отдельные пустоты, окруженные в высшей степени связным множеством. Однако если тремы сплющены почти в прямые, то они почти наверное разобьют наш квадрат на малые несвязные многоугольники. Добавление малых сплющенных трем может привести только к дальнейшему разбиению упомянутых многоугольников. Добавление же больших трем может либо полностью стереть квадрат, либо рассечь его на части, либо оставить без изменений. В последнем случае перколяция становится невозможной. То есть я только что продемонстрировал, что посредством сплющивания трем можно увеличить критическую размерность Dкрит до значений, превышающих любое заданное D<2.

Обобщение для случая E>2 представляется очевидным.

Тот же эффект достигается и в случае E?2 (а также распространяется на случай E=1), если в качестве трема – генератора взять область, заключенную между двумя концентрическими сферическими поверхностями, причем радиус б?льшей сферы должен быть много больше единицы.

Случай, когда критическая размерность Dкрит произвольно близка к 1. Рассуждая эвристически, можно предположить, что при E?3 и почти иглообразных тремах величина критической размерности Dкрит будет произвольно близка к единице.