ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ ХАУСДОРФА

Если согласиться с тем, что различные естественные береговые линии обладают бесконечной длиной, а также с тем, что значение длины, основанное на антропометрической величине ?, дает лишь частичное представление о реальном положении дел, то каким образом можно сравнить между собой разные берега? Так как бесконечность ничем не отличается от бесконечности, умноженной на четыре, много ли нам будет проку от утверждения, что длина любого берега в четыре раза больше, чем длина любой из его четвертей? Необходим лучший способ для выражения вполне разумной идеи о том, что кривая должна обладать некоторой «мерой», причем эта мера для всей кривой должна быть в четыре раза больше, чем та же мера для любой из ее четвертей.

В высшей степени остроумный метод для достижения этой цели предложил Феликс Хаусдорф. В основе его метода лежит тот факт, что линейная мера многоугольника вычисляется сложением длин его сторон без каких бы то ни было их преобразований. Можно предположить, что эти длины сторон возводятся в степень D=1, равную евклидовой размерности прямой (причина такого предположения вскоре станет очевидной). Аналогичным образом вычисляется мера поверхности внутренней области замкнутого многоугольника — посредством покрытия ее квадратами, нахождения суммы длин сторон этих квадратов и возведения ее в степень D=2 (евклидова размерность плоскости). Если же использовать при вычислениях «неверную» степень, то результат этих вычислений не даст нам никакой полезной информации: площадь любого замкнутого многоугольника окажется равной нулю, а длина его внутренней области будет бесконечной.

Рассмотрим с таких позиций полигональную (кусочно-линейную) аппроксимацию береговой линии, составленной из малых интервалов длины ?. Возведя длину интервала в степень D и умножив ее на число интервалов, мы получим некую величину, которую можно предварительно назвать «аппроксимативной протяженностью в размерности D». Так как, согласно Ричардсону, число сторон равно N=F??D то наша аппроксимативная протяженность принимает значение F?DF??D=F.

Таким образом, теоретически аппроксимативная протяженность в размерности D не зависит от ?. На практике же можно наблюдать лишь незначительное изменение этой аппроксимативной протяженности при изменении е.

Кроме того, получает простое подтверждение и обобщение тот факт, что длина внутренней области квадрата бесконечна: аппроксимативная протяженность береговой линии, определенная при любой размерности d<D, стремится к бесконечности при ??0. Так же обстоит дело и с равенством нулю площади и объема прямой. При любом d>D соответствующая аппроксимативная протяженность береговой линии стремится к нулю при ??0. То есть аппроксимативная протяженность береговой линии демонстрирует благоразумное поведение тогда и только тогда, когда d=D.