АЛЬТЕРНАТИВНЫЕ ГЕНЕРАТОРЫ КОХА И КРИВЫЕ КОХА БЕЗ САМОПЕРЕСЕЧЕНИЙ

Сформулируем еще раз основной принцип построения троичной кривой Коха. Построение начинается с двух фигур: инициатора и генератора. Последний представляет собой ориентированную ломаную, состоящую из N равных отрезков длины r. В начале каждого этапа построения мы имеем некоторую ломаную; сам этап заключается в замене каждого прямого участка копией генератора, уменьшенной и смещенной так, чтобы ее концевые точки совпали с концевыми точками заменяемого отрезка. На каждом этапе D=lnN/ln(1/r).

Нетрудно изменить общий вид получаемой конструкции путем модификации генератора; особенно интересны сочетания выступов и впадин — примеры можно найти на следующих после главы иллюстрациях. Таким образом, можно получить различные терагоны Коха, сходящиеся к кривым, размерности которых находятся в интервале от 1 до 2.

Все эти кривые Коха нигде не пересекают сами себя, поэтому при определении D их можно без какой бы то ни было неоднозначности делить на непересекающиеся части. Однако если при построении кривой Коха использовать небрежно подобранные генераторы, существует известный риск получить самокасание или самопересечение, а то и самоперекрытие. Если желаемое значение D достаточно мало, то тщательным подбором генератора можно легко избежать появления двойных точек. Задача резко усложняется при увеличении D, однако пока значение D остается меньше 2, решение существует.

Если же попытаться получить с помощью вышеописанного построения кривую Коха с размерностью больше 2, то мы неизбежно придем к кривым, которые покрывают плоскость бесконечно много раз. Случай D=2 заслуживает особого рассмотрения, и мы займемся им в главе 7.