Низколакунарные фрактальные модели некоторых формальных пространств в физике [630]

В статистической физике считается, что иногда полезно постулировать то или иное пространство с дробной размерностью. Математиков же такие пространства выводят из душевного равновесия: мало того, что эти пространства никто нигде не строит, никто даже не берет на себя труд доказать их существование и единственность. Тем не менее, физики получают весьма существенные результаты, исходя из допущения, что упомянутые пространства действительно существуют и вдобавок обладают определенными сильными и желательными свойствами: они инвариантны при смещении, а их интегралы количества движения и рекуррентные соотношения можно получить из евклидовых пространств с помощью формального аналитического продолжения.

Пространства с дробной размерностью способны привести исследователя фракталов в замешательство. С одной стороны, существует большое количество альтернативных фрактальных интерполяционных пространств, и, следовательно, можно говорить о неопределенной интерполяции. С другой стороны, фракталы, которые мы в работе [165] применили для описания физических явлений, вовсе не являются инвариантными при смещении. В этом отношении может создаться впечатление, что фракталы не так хороши, как постулированные пространства с дробной размерностью.

Решение этой проблемы было подсказано аналогичной критикой, направленной в адрес моей первой модели распределения галактик. На тот случай, когда для фрактала невозможна точная инвариантность при смещении, в главах 34 и 35 показано, что можно подойти к инвариантности сколько угодно близко, придав достаточно малое значение лакунарности.

С этой точки зрения в работе [630] рассмотрена некая последовательность ковров Серпинского (см. главу 14), лакунарность которых стремится к нулю. Вычислены некоторые физические свойства и показано, что предельные фракталы с нулевой лакунарностью идентичны по своим свойствам постулированным пространствам с дробной размерностью.