МАСШТАБНАЯ ИНВАРИАНТНОСТЬ: ЖИВУЧИЕ ПАНАЦЕИ ИЗ ПРОШЛОГО

На протяжении более чем стандартные лет в самых различных научных журналах с завидным постоянством публиковались бесчисленные попытки объяснения масштабно-инвариантных убываний и шумов. Все эти попытки являют собой довольно жалкое зрелище. Их безуспешность однообразна и предсказуема, поскольку они снова и снова – в различных контекстах и различными словами – упираются в одни и те же тупики, бесперспективность которых была осознана еще в начале XIX в.

Панацея смеси Хопкинсона. Столкнувшись с гиперболическим убыванием заряда в лейденской банке, Хопкинсон (кстати, ученик Максвелла) выдвинул в 1878 г. «приблизительное» объяснение, основанное на том, что «стекло можно рассматривать как смесь целого ряда различных силикатов, которые ведут себя по-разному». Это надо понимать так, что функция убывания, которая выглядит как гипербола, в действительности представляет собой смесь двух или более различных экспоненциальных функций вида exp(?s/?m), каждая из которых характеризуется своим значением времени релаксации ?m . Однако даже из тогдашних экспериментальных данных можно видеть, что ни двух, ни четырех экспонент недостаточно для получения гиперболической функции, и аргументацию Хопкинсона сочли несостоятельной.

И все же она продолжает время от времени всплывать, как правило, при отсутствии достаточного для ее опровержения количества данных.

Панацея распределенных значений времени релаксации. Когда данные содержат многие десятичные разряды, в результате чего эмпирическая кривая оказывается представима только в виде смеси какого-нибудь нелепого количества экспоненциальных функций (скажем, 17 или 23), возникает искушение не останавливаться на полпути и рассмотреть возможность существования смеси бесконечного числа экспоненциальных функций. Согласно определению гамма – функции Эйлера, имеем

.

Из этого тождества следует, что если «интенсивность» времени релаксации ? экспоненциальной функции равна t?(?+1), то смесь является гиперболической. Перед нами типичный пример логического круга. Предполагается, что на выходе научного объяснения мы должны получить нечто a priori менее очевидное, нежели имели на входе, однако в данном случае выражения t?? и t?(?+1) функционально идентичны.

Панацея переходного режима. Вторую по распространенности реакцию при встрече с симптомами масштабной инвариантности, описанными в предыдущем разделе, можно сформулировать следующим образом: все эти гиперболические функции t?? объясняются, какими-либо переходными явлениями, если же наблюдать процесс убывания в течение достаточно долгого времени, то характер закономерности непременно изменится на гиперболический. Первую попытку систематического поиска «точки изменения» предпринял в 1907 г. фон Швейдлер [578]: сначала он измерял величину заряда на лейденской банке с интервалами в 100 секунд, затем интервалы постепенно становились больше, и общее время эксперимента составило 16 миллионов секунд (т.е. 200 суток – начался летом, закончился зимой!). Убывание оказалось гиперболическим, точка в точку. Позднее проводились эксперименты по измерению электрических 1/f - шумов (продолжительность опытов варьировалась от нескольких часов до нескольких дней). Результат - 1/f-убывание в поразительном большинстве случаев.

В предыдущих главах – в частности, при исследовании скоплений галактик в главе 9 – отмечалось, что ученые способны настолько погрузиться в поиски порогового значения, что их совершенно перестает занимать необходимость описания и объяснения феноменов, характерных для диапазона масштабной инвариантности. Как ни странно, инженерам также может быть свойственна чрезмерная увлеченность поисками порога, зачастую даже в большей степени. В главе 27 мы рассматривали предложенную мною модель речного стока, которую гидрологи не спешили брать на вооружение только потому, что в ней предполагается бесконечный порог масштабной инвариантности. Конечность порога в инженерном проекте не имеет абсолютно никакого значения, тем не менее, его пылко жаждут во всем остальном, казалось бы, вполне практичные люди.