УПРОЩЕНИЯ: ПЕРИОДИЧЕСКИЕ ПОВЕРХНОСТИ И ПОВЕРХНОСТИ СРЕДИННОГО СМЕЩЕНИЯ

Поскольку мои броуновские и дробные броуновские рельефы основываются на весьма сложных алгоритмах, возникает необходимость в приближениях или упрощениях. Так, например, на рис. 374, 377 и 379 вы видите пуассоновское приближение нашего гауссова процесса. А на рис. 370 – 373 и С5 – С15 непериодическая функция от x и y заменена периодической функцией, вычисленной с помощью методов быстрого преобразования Фурье и затем «обрезанной» так, чтобы ее центральный участок остался не затронут периодичностью.

Кроме того, для генерации фрактальных поверхностей, которые мы обозначим через B*H(x,y), я использовал срединное смещение (как в главе 26). Такие поверхности легче всего реализовать, применяя в качестве инициатора равносторонний треугольник J. Так как значения B*H(x,y) на вершинах треугольника J заданы, на первом этапе функция интерполируется по отдельности на каждую из трех срединных точек сторон треугольника J посредством того же процесса, какой мы применяли к координатным функциям броуновской функции B*H(t) . На следующем этапе интерполируем на девять срединных точек второго порядка и так далее.

Результат, можете быть уверены, получается куда более реалистичным, нежели любая нефрактальная поверхность или большинство фрактальных неслучайных поверхностей. Однако стационарен ли он? Приращение ?B*H=B*H(x,y)?B*H(x+?x,y+?y) должно зависеть только от расстояния между точками (x,y) и (x+?x, y+?y). В нашем же случае ?B*H явно зависит от x,y, ?x и ?y. Следовательно, поверхность B*H нестационарна, даже если H=?.

Я также рассмотрел и сравнил друг с другом дюжину других упрощений (на этот раз стационарных) и надеюсь вскоре опубликовать результаты сравнения.

Рис. 370 и 371. Броуновские озерные ландшафты, обыкновенные и дробные (размерности от D~2,1 до D=5/2, по часовой стрелке)

Верхний пейзаж на рис. 371 представляет собой пример дробного броуновского рельефа поверхности Земли. Остальные пейзажи экстраполируют эту модель на более высокие значения размерности D, вплоть до верхней части рис. 370, где изображен обыкновенный броуновский рельеф из плоскости в прямую. Определяющей характеристикой последнего является то, что любой из его вертикальных срезов представляет собой обыкновенную броуновскую функцию из прямой в прямую, как на рис. 338. Броуновский рельеф не годится для моделирования поверхности Земли, так как его элементы слишком иррегулярны, что заметно невооруженным глазом. Это неудовлетворительное соответствие можно выразить и количественно: размерность поверхности (D=5/2) и береговой линии (D=3/2) оказываются слишком велики.

В каждом пейзаже высота вычисляется для точек пересечения широт и долгот, образующих квадратную решетку. Программой предусматривается также моделирование освещения от источника, располагающегося слева под углом 60° к горизонту; наблюдение осуществляется из точки, приподнятой на 25° над уровнем моря. Более подробное описание можно найти в пояснениях к цветным иллюстрациям.

Рис. 372 и 373. Броуновские береговые линии и «гряды» островов

Первоначально эти иллюстрации были призваны подчеркнуть один только что обнаруженный важный эффект. Когда размерность D рельефа достигает значения 2,5 и превосходит его, океан начинает демонстрировать явную и усиливающую тенденцию к разделению на отдельные округлые «моря». Эти моря сообщаются друг с другом, но вместе с тем каждое сохраняет выраженную индивидуальность. Острова при этом выстраиваются в «гряды». Тот же эффект (хотя и не так явственно) наблюдается и в горных хребтах, присутствующих на всех «пейзажах» на рис. 370, 371 и 379.

Это отсутствие изотропии в выборках полностью согласуется с изотропией порождающего механизма.

Фигуры, изображенные на этих рисунках, эквивалентны (за исключением затравки) плоским сечениям хлопьев на рис. 25 и 26 (которые объясняются в конце главы 30). Здесь, как и на рис. 25 и 26, мы используем усеченную версию одного периода периодического варианта ожидаемого процесса. Это уменьшает зависимость общих очертаний от D. Общие очертания действительно броуновских береговых линий различаются сильнее, чем показано на наших иллюстрациях.

В главах 34 и 35 обсуждается эффект, связанный с упомянутыми грядами.

Рис. 374. Линии уровня в дробных броуновских ландшафтах

На каждом из рисунках этой страницы представлены по две – три линии уровня (береговые линии показаны жирными линиями) для дробных броуновских функций. При построении этих фигур использовались одинаковые программа и затравка, но различны размерности: D~1,3333 (верхняя фигура) и D~1,1667 (нижняя фигура). Тщательно рассмотрев оба рисунка , можно убедиться, что с географической точки зрения они выглядят вполне правдоподобно: верхний сойдет за побережье горного озера, нижний же соответствует более равнинной местности.

Эти кривые выглядят гораздо менее «изрезанными», чем кривые с той же размерностью D на рис. 373. Причина заключается в том, что на тех иллюстрациях каждое сечение демонстрирует ярко выраженный максимум; сколько-нибудь систематических уклонов там почти нет. Здесь же, напротив, перед нами склон огромной горы, который имеет выраженный общий уклон. Благодаря их «общему» виду, фигуры на этой странице можно рассматривать как увеличенные версии какого-нибудь особенно изрезанного малого участка береговой линии с рис. 373.

Сравнение этих различных линий уровня дает лучшее понимание того, насколько широки рамки допустимых взаимодействий между иррегулярностью и фрагментацией даже при фиксированном значении размерности D.

Рис. 375 и С11 (вверху). Броуновская Пангея (размерность береговой линии D=3/2)

На поверхности «далекой планеты», изображенной на рис. С11 (вид из космоса), мы видим очертания воображаемой фрактальной Пангеи. Ее рельеф был получен посредством компьютерной реализации (насколько мне известно, это было проделано впервые) случайной поверхности, которой мы обязаны Полю Леви: броуновской функции из точек на сфере (широта и долгота) в скалярные величины (высота). Уровень моря был выбран таким образом, чтобы три четверти общей площади оказалось под водой. Береговую линию получили интерполяцией.

На этом рисунке та же Пангея изображена на хаммеровской карте – проекция, предпочитаемая приверженцами вегенеровской теории континентального дрейфа.

Насколько эта модельная Пангея похожа на «настоящую»? Мы вовсе не надеемся, что совпадут какие-то конкретные локальные детали; нас интересует лишь совпадение степеней извилистости – как локальной, так и глобальной. Как и следовало ожидать, до совершенного сходства наша модель не дотягивает. В самом деле, размерность D береговой линии модельной Пангеи составляет 3/2, в то время как гипотетические рисунки в учебниках геологии приписывают реальной Пангее то же значение D, что наблюдается в очертаниях современных континентов, т.е. D~1,2. Если вдруг появятся какие-то новые данные, совместимые с D=3/2, то мы получим возможность объяснить геометрию Пангеи, основываясь на весьма элементарных тектонических допущениях.

Фракталы в неевклидовом пространстве. В неевклидовой геометрии Римана роль плоскости выполняет сфера. Неевклидовы геометрии, таким образом, неевклидовы только наполовину: они занимаются евклидовыми фигурами на неевклидовых носителях. Б?льшая часть настоящего эссе демонстрирует аналогичную «половинчатость»: мы изучаем неевклидовы фигуры в евклидовом пространстве. Представленная на рисунке Пангея объединяет наши подходы, поскольку представляет собой пример неевклидовой фигуры на неевклидовом же носителе.

Рис. 377. Первые известные примеры броуновских береговых линий (обыкновенных и дробных)

Мое утверждение о том, что с помощью должным образом выбранных дробных броуновских функций можно достаточно правдоподобно моделировать земной рельеф, основывалось первоначально на вот этих четырех моделях береговых линий. Руководствуясь исключительно сентиментальными соображениями, я перенес их (вместе с рис. 375) сюда из французского эссе 1975 г. почти без изменений, разве что черные области закрашены теперь более аккуратно, благодаря чему оказалось возможным передать исходное построение более точно.

Когда значение D близко к единице (верхний рисунок), береговая линия слишком прямолинейна, чтобы выглядеть реалистичной.

А вот очертания берегов со второго сверху рисунка (D=1,3000) вполне могли бы занять достойное место на карте из настоящего атласа. Большой остров слева явно напоминает Африку или Южную Америку (в зеркальном отражении), а большой остров справа очень похож на Гренландию (если повернуть страницу на 90° против часовой стрелки). Наконец, если повернуть страницу на 90° по часовой стрелке, то из обоих островов вместе получаются слегка исхудавшая Новая Зеландия и сдвоенный остров Баунти.

Когда D увеличивается до 3/2 (третий рисунок сверху), игра в географические загадки становится немого сложнее.

При дальнейшем увеличении D до значений, близких к 2 (нижний рисунок), сложность географических загадок возрастает весьма значительно (возможно, они просто становятся слишком специализированными: что это у вас тут? Миннесота? Финляндия?). В конце концов всякое сходство с реальностью пропадает.

Другие затравки дают точно такой же результат. Согласно результатам аналогичных тестов, основанных на более точных графических построениях, наиболее реалистичным значением фрактальной размерности береговых линий следует признать D~1,2.

Рис. 379. Первые известные примеры дробных броуновских островов (размерность D=2,3000)

Присутствие здесь этой иллюстрации, несомненно, можно считать сентиментальным перегибом, поскольку она не несет в себе ничего такого, что не было бы лучше выражено на других иллюстрациях. В свое оправдание скажу лишь, что эти островные виды с изменяющимся уровнем моря были опубликованы в работе [384] и в эссе 1975 г., и я просто не могу на них спокойно смотреть. Они являются частью более обширной серии изображений дробных броуновских островов с различными значениями D и различными уровнями моря – насколько мне известно, прежде никто подобных изображений не создавал. (В 1976 г. мы сделали фильм об этом необычном острове, поднимающемся из моря; в 1981 г. фильм выглядит до смешного примитивно, однако он еще может стать антикварной редкостью.)

Я часто думаю, где же я мог в действительности видеть пейзаж, изображенный на нижнем рисунке: эти маленькие островки, рассыпанные, точно семена, у оконечности узкого и длинного полуострова.

Оригинальная картинка была сфотографирована с электронно-лучевой трубки, у которой были проблемы с резкостью, поэтому данные пришлось обрабатывать заново. Здесь (в противоположность рис. 370, 371 и С11 – С17) не требуется искусственно моделировать боковое освещение. Так получилось, что наш древний графический процесс создает у зрителя впечатление, что море у горизонта словно бы мерцает.

Читатель, несомненно, заметит, что по сравнению с более поздними ландшафтами размерность, заявленная для изображенных здесь поверхностей, на удивление высока. Причина заключается в том, что тогдашние графические методы были не способны показать мелкие детали, поэтому размерности ранних ландшафтов кажутся меньше, чем реальные значения D, задаваемые генерирующим эти ландшафты программам. Для компенсации мы выбирали б?льшие значения D, чем это было необходимо, исходя из данных наблюдений. Однако с улучшением качества графики этот сдвиг стал слишком заметным, т.е. не только ненужным, но и вредным. Сегодня необходимости в такой компенсации нет, и, задавая генерирующей программе значения размерности, соответствующие данным Ричардсона, мы получаем в высшей степени реалистичные ландшафты.