35 ОБОЩЕНИЯ ТРЕМЫ И УПРАВЛЕНИЕ ТЕКСТУРОЙ

Сообразуясь с логикой нашего эссе, в главах 31 – 33 мы ввели трема – фракталы с помощью простейших примеров, в основе которых лежат интервалы, круги и шары. Полученные результаты радуют взор своим разнообразием, которое, однако, вряд ли можно сравнить с богатствами, ожидающими нас среди трем более общей формы.

Да, разумеется, в работе [132] со всей однозначностью показано, что размерность трема – фрактала определяется исключительно распределением длин (площадей, объемов) трем. Однако те дни, когда размерность D была единственным числовым параметром, характеризующим фрактал, остались в прошлом, как только мы ввели в главе 34 понятия сукколяции и лакунарности. В настоящей главе показано, какое влияние на эти характеристики оказывает форма тремы. И снова мы оказываемся свидетелями чудесного совпадения спроса, предъявляемого прецедентными исследованиями, и предложения, поступающего со стороны геометрии.

Исследуя трема – фрактал на предмет сукколяции, мы убеждаемся в том, что форма трем влияет на величину Dкрит, т.е. при заданном значении D от нее зависят знак и величина разности D?Dкрит.

Лакунарность фрактала также зависит от формы трем, и здесь мы можем сделать несколько более продвинутых по сравнению с предыдущими главами заявлений. Из линейных трема – фракталов (глава 31) самыми лакунарными являются пыли Леви; наиболее простой и естественный путь получения любой меньшей степени лакунарности заключается в использовании в качестве тремы объединения многих интервалов. В случае пространственных трема - фракталов, получаемых непосредственным построением (глава33), простейший способ изменения лакунарности состоит в изменении формы каждой тремы с круглой или шарообразной на любую другую. В случае же пространственных трема – фракталов, субординированных броуновскому или дробному броуновскому движению (глава 32), следует в качестве субординатора взять какую-либо другую фрактальную пыль, менее лакунарную, чем пыль Леви.

К сожалению, отведенное мне время не бесконечно, а для того, чтобы привести в надлежащий (пригодный к публикации) вид все теоретические рассуждения, касающиеся трема – фракталов, потребуется значительная их переработка. Так что эта глава (собственно, последняя в настоящем эссе) поневоле оказывается не более чем наброском.