K главе 6

We use cookies. Read the Privacy and Cookie Policy

6.1. Воспользоваться тем, что p ? 1, p, p + 1 — три последовательных числа, причем p — простое, большее трех.

6.3. Если n = 2k + 1, то аn + bn = (а + b)(аn ? 1 ? ... + bn ? 1).

6.4. Среди этих же чисел будет 125/2 = 62[16], делящихся на 8 = 2? и т. д.

6.5. Так как сумма цифр числа делится на 81, то естественно предположить, что оно делится на 81. Однако такой признак делимости не был доказан в курсе арифметики, и поэтому придется дважды воспользоваться признаком делимости на 9. Для этого удобно разбить цифры числа на 9 групп, каждая из которых делится на 9.

6.6. Если многочлен n4 + 4 разложен на множители второй степени, то он может быть простым числом только в том случае, если один из множителей равен единице.

6.7. Чтобы убедиться, что числитель всегда делится на число, стоящее в знаменателе, его придется разложить на множители.

6.8. Способ 1. Предположим, что данная дробь сократима. Тогда 5x + 7 = qr, 2x + 3 = pr. Рассматривая эти равенства как систему уравнений относительно x, исключим x.

Способ 2. Рассмотреть вместо данной дроби обратную и выделить целую часть.

6.10. Пример дальнейших рассуждений: при умножении цифры с на 3 мы должны получить число, оканчивающееся на 1. Это возможно лишь при с = 7.

6.11. Так как p — число нечетное, то мы имеем три последовательно нечетных числа. Докажите, что одно из них обязательно делится на 3.

6.12. Если tg 5° — рациональное число, то cos 10° и cos 30° — тоже рациональные числа.

6.13. Сумма девяток должна быть на 10, или на 21, или на 32, или на 43, ... меньше числа, которое делится на 11. Чему должны быть равны в сумме остальные цифры?

6.14. Однородные выражения удобно преобразовывать с помощью замены у = kx. Так как x и у — целые числа, то число k — рациональное, т. е. k = p/q . Остается рассмотреть возможные значения сомножителей, произведение которых равно 17. Нужно добиться того, чтобы каждый сомножитель был целым числом.

6.15. Удобно записать уравнение в виде (x ? 2у)(x + 2у) = 5? · 9 · 89 и вспомнить, что мы ищем целочисленные решения.

6.16. Условие 11(4x ? 1) = 69(у ? x) удовлетворяется при целочисленных значениях x и у, только если 4x ? 1 = 69k, уx = 11n. Из первого соотношения следует, что k + 1 делится на 4. Отсюда k = 3, 7, 11, ... .

Больше книг — больше знаний!

Заберите 20% скидку на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ