К главе 22

We use cookies. Read the Privacy and Cookie Policy

22.2. После того как найдена сумма двух первых слагаемых, можно воспользоваться формулой синуса суммы, так как третье слагаемое положительно, но меньше ?/4, и вся сумма не больше ?/2.

22.4. Так как оба слагаемых расположены в интервале [0, ?/2], то все тригонометрические функции от них неотрицательны.

22.5. Воспользоваться формулами приведения с тем, чтобы под знаком арккосинуса стоял косинус, а не синус.

22.9. Если перенести acrsin 3x/5 в правую часть и взять синусы от обеих частей, то в предположении, что x > 0, получим уравнение, равносильное данному.

22.10. После взятия косинусов от обеих частей уравнения получится иррациональное уравнение, при решении которого возможно приобретение посторонних корней.

22.11. Так как обе части лежат в интервале (??/2?/2), то от обеих частей данного уравнения можно взять тангенсы, что не нарушит равносильности.

22.13. Ясно, что в результате взятия котангенсов от обеих частей равенства мы можем получить посторонние корни, так как у неравных углов могут быть равные котангенсы. Однако возможна и потеря корней, если в интервал изменения углов попадает значение k?.

Больше книг — больше знаний!

Заберите 20% скидку на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ