Несчетность континуума.

We use cookies. Read the Privacy and Cookie Policy

Теперь уже несложно доказать, что множество всех точек на прямой линии несчетно. Вместо этого множества можно говорить о множестве всех действительных чисел, так как каждой точке прямой соответствует действительное число и обратно.

Каждое действительное число можно записать в виде бесконечной десятичной дроби вида

a1, ?1 ?2 ?3 ... ?n ...

Некоторые из них имеют даже по две записи; например, 0,500000... и 0,49999999... — это одно и то же число. Для определенности будем пользоваться записью с нулями.

Предположим, что нам удалось каким-то образом перенумеровать все действительные числа. Чтобы доказать, что это предположение неверно, достаточно построить хоть одно незанумерованное число. Следуя примеру Иона Тихого, поступим следующим образом.

Сначала напишем нуль и поставим после него запятую. Потом возьмем число, получившее первый номер, и посмотрим на его первый десятичный знак после запятой (то есть на число десятых). Если эта цифра отлична от 1, то в числе, которое мы пишем, поставим после запятой 1, а если эта цифра равна 1, то поставим после запятой 2. Затем перейдем к числу, получившему второй номер, и посмотрим на его вторую цифру после запятой. Снова если эта цифра отлична от единицы, то в числе, которое мы пишем, поставим на месте сотых цифру 1, если же эта цифра является единицей, то поставим цифру 2. Точно так же будем действовать и дальше, каждый раз обращая внимание лишь на n-ю цифру числа, получившего n-й номер. В результате мы выпишем некоторое число, например

N = 0,1121211...

Ясно, что это число не получило никакого номера: в первом десятичном знаке оно отличается от числа с номером 1, во втором — от числа с номером 2, ..., в n-м — от числа с номером n и т. д.

Чтобы читателю стало яснее, как выписывается число, не получившее номера, предположим, что при выбранной нумерации первые пять чисел имеют следующий вид:

Тогда число, не получившее номера, будет начинаться со следующих десятичных знаков:

0,12121 ...

Разумеется, не только это, но и многие другие числа не получили номеров (мы могли бы заменять все цифры, кроме 2, на 2, а цифру 2 на 7 или выбрать еще какое-нибудь правило). Но нам достаточно существования одного-единственного числа, не получившего номера, чтобы опровергнуть гипотезу о возможности нумерации всех действительных чисел.

Больше книг — больше знаний!

Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ