Трансфинитные числа.

We use cookies. Read the Privacy and Cookie Policy

Натуральные числа применяют не только для ответа на вопрос "сколько?", но и для ответа на вопрос "какой по счету?" Иными словами, их используют не только как количественные, но и как порядковые числа. Мощности можно использовать лишь как количественные числа. Для описания порядка нужны иные понятия. Даже самое простое из бесконечных множеств — множество N натуральных чисел — можно упорядочить бесчисленной совокупностью возможностей. Кроме стандартного расположения 1, 2, 3, 4, 5, 6, ... можно поступить и так: сначала взять все нечетные числа (с их обычным порядком), а потом все четные: 1, 3, 5, ..., 2, 4, 6, ... Но при попытке перенумеровать числа в таком порядке нас постигнет неудача — все номера окажутся затраченными на нечетные числа, а на долю четных чисел ничего не останется. Поэтому кроме обычных номеров понадобятся символы новой природы. Кантор предложил при таком порядке расположения чисел нумеровать число 2 символом ?, число 4 — символ ?+1 и т. д.

Еще больше символов понадобится, если сначала выписать все числа, делящиеся на 3, потом дающие при делении на 3 остаток 1, и, наконец, числа, дающие при таком делении остаток 2:3,6, 9,..., 1,4,7,..., 2,5,8,... Здесь для нумерации числа 2 понадобится символ ?*2, число 5 будет занумеровано символом ?*2+1 и т. д. А если выписать сначала все простые числа, потом числа, разлагающиеся в произведение двух простых множителей, трех простых множителей и т. д., а в самом конце записать число 1, которое не относится ни к простым, ни к составным числам, то для обозначения последнего элемента придется применить совсем новый символ ??.

Кантор придумал еще много различных расположений множества натуральных чисел, причем все они (как и разобранные выше) обладали следующим свойством: каждая часть множества натуральных чисел имела в таком расположении наименьший элемент. Он назвал множества, элементы которых расположены в одном из этих порядков, вполне упорядоченными (термин применяется и для несчетных множеств), а символы, введенные им для нумерации элементов вполне упорядоченных множеств,- трансфинитными числами (от латинских слов trans — за и finitae — конечный). Изучая свойства трансфинитных чисел, Кантор пришел к следующей проблеме: какую мощность имеет множество всех счетных трансфинитов? Легко показать, что она несчетна, но не превосходит мощности континуума. А вот равна ли она этой мощности или меньше ее, на этот вопрос не смогли дать ответ ни сам Кантор, ни его многочисленные ученики и последователи. О современном состоянии указанной проблемы, называемой проблемой континуума, будет рассказано в главе 4.

В начале XX в. теория бесконечных множеств превратилась в модную область математической науки. Некоторые специалисты придавали очень большое значение исследованиям в этой области. Например, А. Френкель писал: "Завоевание актуальной бесконечности методами теории множеств можно рассматривать как расширение нашего научного кругозора, не меньшее по значению, чем коперникова система в астрономии и теория относительности и даже квантовая теория в физике".

Но самый строгий судья научных теорий — время ставит в конце концов все на свои места. Постепенно все реже и реже стали появляться работы, в которых бы использовались трансфинитные числа, исследовались мощности, отличные от счетной или континуальной. Множества с такими мощностями можно получить, рассматривая, например, все части плоскости или все функции на отрезке [0; 1]. Но дело в том, что и в теоретических исследованиях, и для решения практических проблем, нужны не любые части плоскости и не любые функции, а лишь получаемые с помощью фиксированных процессов из некоторых простейших. А множества таких "хороших" частей или функций имеют мощность континуума.

И хотя, по словам П. С. Александрова[51] и А. Н. Колмогорова[52], "огромное влияние теории множеств на развитие математики последнего полустолетия является в настоящее время общепризнанным факушм", в настоящее время это влияние идет совсем по иным каналам. В следующей главе мы расскажем о том, как изменилось лицо некоторых областей математики под влиянием теоретико-множественных концепций.

Больше книг — больше знаний!

Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ