Проигранное пари.
Нам осталось рассказать об одной попытке вывести теорию множеств, а с нею и всю математическую науку из затянувшегося состояния кризиса. Ее предпринял в 1907 г. Брауэр, который в значительной степени опирался на мнения, неоднократно высказывавшиеся Кронекером и Пуанкаре. По мнению Брауэра и его последователей, начиная с XVII столетия в математическом анализе и геометрии совершенно игнорировался особый характер понятия бесконечности. Поэтому они считали, что слывшие строгими методы теории действительных чисел и математического анализа, введенные в математику учеными XIX в., не только не достигали поставленных перед ними целей, но привели к созданию разработанной системы, основанной на совершенно ошибочной тенденции обращаться с бесконечностью с помощью средств, выработанных для конечных совокупностей. Тем самым отвергалась в целом вся концепция математики, шедшая от Коши, Вейерштрасса и Кантора.
Брауэр и его школа полагали, что эта концепция действительного числа и функции лишь маскирует опасности, таящиеся в понятии бесконечности, изобилует порочными кругами в рассуждениях и претендует на чрезмерную общность, что неизбежно приводит к противоречиям. Тем самым полностью отвергался прогресс в деле укрепления основ классической математики, достигнутый в XIX в., а канторовская теория множеств рассматривалась как "любопытный патологический казус" в истории математики, от которого грядущие поколения, вероятно, придут в ужас. Особенно интересно во всем этом то, что сам Брауэр имел значительные достижения в области теоретико-множественной математики.
Чтобы поставить математику на правильный, по их мнению, путь, надо было опираться на интуицию — отсюда идет и название этого направления в науке — интуиционизм. Интуиционисты отказывались рассматривать континуум как множество, состоящее из точек, поскольку считали понятие континуума более первичным, чем понятие точки. Они говорили, что континуум — это среда свободного становления точек, а не множество точек.
Придирчивой критике интуиционисты подвергли самую логику, которой пользовались все математики XIX в., да и предшествующих столетий. В частности, они категорически отвергли один из основных законов аристотелевой логики, а именно закон исключенного третьего, который состоит в том, что любое высказывание является либо истинным, либо ложным. По мнению интуиционистов, этот закон был выведен из наблюдений над конечными совокупностями предметов и имеет место лишь для утверждений, касающихся таких совокупностей. Например, чтобы убедиться в истинности высказывания: "Среди людей, проживавших на земном шаре 1 января 1983 г., не было двухсотлетних", достаточно проверить возраст каждого человека, жившего в этот день. Но такой метод проверки не годится для выяснения свойств элементов бесконечных множеств — эти элементы не построишь в ряд и не устроишь поголовную проверку документов.
Таким образом, из арсенала интуиционистов выпало столь сильное средство доказательства, как доказательство от противного. Они отвергали "чистые доказательства существования" и требовали каждый раз предъявления конкретного примера объекта, обладающего данным свойством. Иными словами, в качестве доказательства существования чего-либо они принимали лишь описание конструкции соответствующего объекта. Германн Вейль, примкнувший к движению интуиционистов, сравнивал конкретные утверждения с сокровищами, а теоремы существования — с бумагами, содержащими указания, где надо искать сокровища. Доведение теоремы существования до конструкции завершало поиск сокровища.
Иными словами, интуиционисты требовали от утверждений вида "существуют четные числа" переходить к утверждениям "число 2 — четное".
В одном из докладов об интуиционизме Брауэр привел в качестве примера утверждения, которое нельзя ни доказать, ни опровергнуть, следующее: "В десятичном разложении числа я идут десять цифр 9 подряд". В те времена было известно лишь 707 десятичных знаков для я (да и то большая часть из них оказалась неверной). Сейчас с помощью ЭВМ найдено неизмеримо больше десятичных знаков для ?, так что среди них уже есть, быть может, идущие подряд 10 девяток. Но если заменить число 10 на 101000, то можно быть уверенным, что задача вычисления необходимого для проверки нашей гипотезы количества десятичных знаков окажется неразрешимой для любых машин, которые когда-либо будут построены. А так как теоретически решить проблему тоже невозможно, то утверждение о наличии в десятичном разложении числа n 101000 идущих подряд девяток заведомо непроверяемо. Правда, один из математиков, присутствовавших на докладе Брауэра, сказал, что хотя мы и не знаем, верно это утверждение или нет, но господь-бог знает. "Я не имею прямой связи с богом",- сухо возразил Брауэр.
Вся математика получила в руках интуиционистов иной вид. Например, в их анализе нет разрывных функций, а в их арифметике из равенства нулю произведения еще не следует обращение в нуль хотя бы одного из множителей. Вообще, почти каждое утверждение классической математики приходилось заменять весьма непривычно звучащим интуиционистским аналогом, а от многого надо было отказаться. "Я не считаю неприкосновенными все теоремы из обычных учебников",- заявил интуиционист Сколем.
Призыв к столь коренным преобразованиям нашел признание лишь у небольшой (хотя и весьма влиятельной) группы ученых. Яростным противником брауэровских реформ был Гильберт. Он говорил: "То, что делают Вейль и Брауэр, есть не что иное, как возрождение идей Кронекера! Они стремятся спасти математику, выбрасывая за борт то, что вызывает беспокойство... Они крошат и рубят науку. Если бы мы приняли такую реформу, которую они предлагают, то подверглись бы риску потерять большую часть наших ценных сокровищ".
Гильберт гневно утверждал, что отнять у математиков закон исключенного третьего все равно, что забрать у астрономов телескоп или запретить боксерам пользоваться кулаками. Он писал, что запрещение теорем существования и закона исключенного третьего почти равносильно полному отказу от математической науки, а жалкие остатки, немногочисленные, неполные, не связанные друг с другом результаты, которые были выработаны интуиционистами, не могут идти ни в какое сравнение с могуществом современной математики. Горько сетовал Гильберт на то, что в среде математиков смогла иметь невероятнейшее и эксцентричнейшее влияние сила гипноза одного темпераментного и остроумного человека.
Не оставались в долгу и интуиционисты, утверждая, что программа спасения математики, предложенная Гильбертом, ведет к тому, что из науки изгоняется смысл. Однако большинство математиков примкнуло в данном вопросе к точке зрения Гильберта, полагая, что само существование математики и обширность ее приложений в течение многих столетий свидетельствуют о том, что она не столь уж нелепа и бессодержательна, и для того, чтобы вылечить палец, незачем ампутировать ногу.
Несмотря на то что большинство математиков отвергало идеи интуиционистов, те были уверены в своей грядущей победе. В 1918 г. Германн Вейль предложил своему другу известному венгерскому математику Дьердю Пойа[113] пари, что через 20 лет идеи интуиционизма восторжествуют. В качестве критерия он указал две теоремы классического анализа, которые можно найти в любом учебнике высшей математики, но которые не имеют смысла в математике интуиционистов. По его мнению, через двадцать лет эти теоремы должны были исчезнуть из общепризнанной математики. Однако по истечении этого срока Вейль признал, что пари проиграно (хотя и уговорил Пойя не публиковать соответствующего заявления, что предусматривалось условиями пари).
Следует отметить, что за последние десятилетия интерес к интуиционизму снова возрастает, причем многие выдающиеся логики явно или неявно примыкают к этому течению математической мысли.
Больше книг — больше знаний!
Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом
ПОЛУЧИТЬ СКИДКУ