Бесконечные множества.
Все то, что говорилось о множествах выше, относилось в основном к множествам, содержащим конечное число элементов. На протяжении тысячелетий изучение бесконечных множеств было изгнано из науки авторитетом Аристотеля. Впрочем, преподававший в Оксфордском университете в XIII в. схоласт Роберт Гроссетет (он был, между прочим, учителем знаменитого Роджера Бэкона) считал, что актуально-бесконечное — это определенное число, которое хотя и не познаваемо для нас, но существует актуально. Более того, Гроссетет считал возможным сравнивать друг с другом две бесконечности. Он полагал, что больше моментов в большем времени, чем в меньшем, и больше точек в большей величине, чем в меньшей. Число "точек в отрезке длиной в локоть" он считал истинной мерой этого отрезка. Тем самым потенциальной бесконечности Аристотеля снова была противопоставлена актуальная бесконечность единиц.
Использование актуальной бесконечности в математике исподволь начинается в XVIII в. (бесконечные ряды фактически рассматривались как суммы бесконечного множества слагаемых), а в XIX в. Гаусс, столь резко возражавший против использования актуальной бесконечности в математике, фактически использует ее в своих теоретико-числовых исследованиях. В более явном виде использование этих же понятий встречается в работах последователей Гаусса немецких математиков Л. Дирихле[44] и Р. Дедекинда[45].
Однако систематически свойства бесконечных множеств почти не изучались. Лишь в 1851 г. была посмертно опубликована книга чешского математика и философа Б. Больцано[46] "Парадоксы бесконечности", в которой он сделал первую попытку исследовать свойства актуальной бесконечности. В этой книге были предвосхищены многие понятия теории бесконечных множеств, однако они не получили еще той точности и ясности, которая была придана им через два десятилетия в работах Г. Кантора.
Занимаясь теорией бесконечных рядов, составленных из тригонометрических функций, Кантор пришел к необходимости разобраться в том, какие множества можно составлять из точек прямой линии (эти множества называют теперь точечными). В частности, его заинтересовал вопрос, всегда ли можно перенумеровать все точки таких множеств. Исследуя его, он обнаружил, что свойства конечных и бесконечных множеств совершенно непохожи друг на друга: многие операции, невозможные для конечных множеств, без труда выполняются для бесконечных. Попробуйте, например, поместить в гостиницу, каждый номер которой занят одним постояльцем, еще жильцов, да так, чтобы в каждом номере снова жил лишь один человек. Не получается? Так это только потому, что число номеров в гостинице конечно! А если бы в ней было бесконечно много номеров?.. Но такие гостиницы могут встретиться разве что в рассказах межзвездного скитальца Иона Тихого. Итак, предоставим ему слово.
Больше книг — больше знаний!
Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом
ПОЛУЧИТЬ СКИДКУ