Изгнание бесконечности.

We use cookies. Read the Privacy and Cookie Policy

Смелую и чрезвычайно глубокую попытку справиться с трудностями теории бесконечных множеств предпринял Давид Гильберт. Расставаться с достижениями этой теории он никак не хотел, заявляя, что никто не выгонит математиков из рая, который создал для них Георг Кантор. В своей работе "О бесконечном" Гильберт отметил, что, хотя бесконечно малые и бесконечно большие величины были удалены из математического анализа, бесконечное все же пробралось в него в виде бесконечных последовательностей, с помощью которых определяют действительные числа, а затем в виде понятия системы действительных чисел, воспринимаемой как готовая и законченная совокупность.

Вейерштрасс сводил понятия о бесконечно малых и бесконечно больших к неравенствам, связывающим конечные величины. Подобно этому Гильберт хотел изгнать из математики бесконечные множества. Он считал, что в тех случаях, когда они встречаются в математических рассуждениях, их следует понимать как оборот речи, позволяющий коротко говорить о сложных свойствах конечных множеств. По его мнению, бесконечного нет в природе и потому оно недопустимо как основа разумного мышления. В этом Гильберт усматривал замечательную гармонию между бытием и мышлением. Оперирование с бесконечным могло, по его мнению, стать надежным лишь через конечное.

Эту точку зрения называют финитарной. Для строгого ее проведения Гильберт дал четко ограниченный список допустимых символов. А для того чтобы помешать проникновению в математику каких-либо представлений о бесконечном, связанных с наглядностью, с использованием интуиции, он разработал специальную теорию формальных доказательств. В этой теории символы, выражающие логические утверждения, преобразуются по точно сформулированным правилам, подобно тому как в обычной алгебре преобразуются алгебраические выражения.

Первой целью нового исчисления было объявлено формальное доказательство непротиворечивости арифметики натуральных чисел. Более двух десятилетий Гильберт и его ученики неустанно искали пути для решения этой задачи. Хотя они добились многих успехов, окончательный успех никак не приходил.

В 1931 г. появилась статья Курта Гёделя[108], которая прозвучала как гром с ясного неба. Тончайшим образом усовершенствовав и формализовав аргументы, восходившие по сути дела к древнему парадоксу "Лжец", он доказал удивительный результат: в любой формальной системе, содержащей арифметику натуральных чисел, можно сформулировать утверждение, которое в этой системе нельзя ни доказать, ни опровергнуть. В то же время если принять существование всего бесконечного множества натуральных чисел, то это утверждение должно быть либо истинным, либо ложным, а потому "демон" Бореля, способный сделать счетное множество проверок, смог бы узнать, какой из этих двух случаев имеет место.

Открытие Гёделя было одним из крупнейших достижений логики за двухтысячелетий период ее существования — оно вскрыло пропасть между истинным и доказуемым. Правда, однажды Гёделю довелось услышать на одной из конференций по логике доклад, в котором утверждалось, что со времен Аристотеля никаких достижений в этой науке не было.

Мы не будем углубляться в круг вопросов, связанных с открытием Гёделя, и отошлем читателя к прекрасной книге Ю. И. Манина "Доказуемое и недоказуемое", вышедшей в 1979 г. в издательстве "Советское радио".

Хотя после работы Гёделя стало ясно, что намеченная Гильбертом программа невыполнима, его усилия не пропали даром — в ходе исследований возникла новая ветвь математики, касавшаяся теории доказательств и получившая название метаматематики. Это привело к невиданному углублению идей и развитию методов математической логики, что оказалось потом полезным при разработке алгоритмических языков для быстродействующих вычислительных машин.

Больше книг — больше знаний!

Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ