На каждый прилив — по отливу.
Мы познакомились с тем, как узнать, что два конечных множества имеют поровну элементов, не прибегая к пересчету этих множеств. Этот способ можно применить и для бесконечных множеств. Только здесь уж не удастся прибегнуть к помощи "оркестра", а придется самим располагать элементы двух сравниваемых множеств в "танцующие пары".
Итак, пусть у нас даны два множества А и В. Говорят, что между ними установлено взаимно однозначное соответствие, если элементы этих множеств объединены в пары (a, b) так, что:
1. элемент a принадлежит множеству A, а элемент b — множеству B;
2. каждый элемент обоих множеств попал в одну и только одну пару.
Например, если множество A состоит из юношей на танцплощадке, а множество B — из девушек на той же площадке, то пары (a, b) образуются из танцующих друг с другом юноши и девушки. Если множество A состоит из зрителей, а множество B — из театральных кресел, то пара (a, b) образуется из зрителя и кресла, на котором он сидит. Читатель сам легко придумает разнообразные примеры таких соответствий между множествами равной численности.
Разумеется, не всякое соответствие между множествами является взаимно однозначным. Если множество A состоит из всех деревьев на Земле, а множество B — из растущих на них плодов, то между этими множествами можно установить соответствие: каждому плоду сопоставить дерево, на котором он растет. Но это соответствие не будет взаимно однозначным: на некоторых деревьях растет помногу плодов, а другие сейчас не плодоносят. Поэтому одни элементы a (деревья) будут участвовать во многих парах, а другие элементы a не войдут ни в одну пару.
Существование взаимно однозначного соответствия для конечных множеств равносильно тому, что у них поровну элементов. Важнейшим поворотным пунктом в теории множества был момент, когда Кантор решил применить идею взаимно однозначного соответствия для сравнения бесконечных множеств.
Иными словами, по Кантору, два (быть может, и бесконечных) множества A и B имеют поровну элементов, если между элементами этих множеств можно установить взаимно однозначное соответствие.
Обычно математики не говорят, что "множества A и B имеют поровну элементов", а говорят, что "A и B имеют одинаковую мощность" или "множества A и B эквивалентны".
Таким образом, для бесконечных множеств слово мощность значит то же самое, что для конечных множеств "число элементов".
Еще до Кантора к понятию взаимно однозначного соответствия пришел чешский ученый Б. Больцано. Но он отступил перед трудностями, к которым вело это понятие. Как мы вскоре увидим, после принятия принципа сравнения бесконечных множеств с помощью взаимно однозначного соответствия пришлось расстаться со многими догмами.
Больше книг — больше знаний!
Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом
ПОЛУЧИТЬ СКИДКУ