Измерение кривизны.

We use cookies. Read the Privacy and Cookie Policy

Итак, измеряя сумму углов треугольника, наблюдая за поворотом параллельных при переносе по замкнутому контуру, проверяя теорему Пифагора, жители планеты убедились, что они живут не на плоскости, а на какой-то искривленной поверхности. За меру кривизны некоторого участка поверхности они приняли угол поворота отрезка, параллельно перенесенного вдоль границы этого участка. Эту кривизну можно было считать и по-другому: разбить участок на треугольники и сложить избытки всех треугольников. Ведь, если два треугольника объединяются в один, то их избытки складываются.

Оказалось, что чем больше площадь участка, тем сильнее он искривлен. Точнее говоря, избыток любого треугольника оказался пропорционален его площади:

? + ? +? — ? = kS(1)

мы будем измерять углы не в градусах, а в радианах; при таком измерении сумма углов плоского треугольника равна ?). Отсюда был сделан вывод, что кривизна поверхности на единицу площади всюду одна и та же. Число к и приняли за меру кривизны.

Но среди всех поверхностей есть только одна поверхность, для которой избыток треугольника на единицу площади всегда один и тот же — это сфера. Поэтому геометры Ялмеза установили, что они живут на сфере, а не на какой-нибудь другой поверхности. Без особого труда удалось даже найти радиус этой сферы. Ведь если число к не зависит от выбора треугольника, его достаточно подсчитать для одного треугольника. Возьмем, например, треугольник ABC на рис. 2, а. Его избыток равен 90°, или, в радианной мере, ?/2. Площадь же этого треугольника равна 1/8 площади сферы, то есть ?R2/2. Подставляя эти значения в формулу (1), получаем, что k = 1/R2, а потому для любого сферического треугольника

? + ? +? — ? = S/R2,

где ?, ?, ? — его углы, S — площадь и R — радиус сферы. Полученная формула позволяет определить радиус сферы путем измерения углов и площади треугольника. Разумеется, этот способ не очень удобен, так как требует весьма большой точности измерения углов. Для измерения радиуса Земли прибегли к иному способу — измерению длины дуги меридиана, что потребовало наблюдений за звездами.

Больше книг — больше знаний!

Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ