Под микроскопом.
Уточнение математических понятий — дело обоюдоострое. При этом, конечно, устраняются многие неясности, повышается четкость математической речи, становятся более убедительными доказательства теорем. Но такие достижения влекут за собой и определенные потери. То, что выигрывает наука в строгости, она часто теряет в наглядности. Кроме того, всегда возникает вопрос, соответствуют ли понятия, получившие строгие определения, тем грубым, наглядным образам, которые они призваны моделировать в математике. Тем самым камни преткновения, убранные с поля математики, обычно не исчезают, а лишь оказываются перенесенными на границу между этой наукой и ее приложениями.
Но для математической науки точные определения являются насущной необходимостью. Изучая свойства определяемых ими понятий, ученые узнают свойства тех математических моделей, с помощью которых они пытаются описывать реальный мир. И если эти свойства оказываются непохожими на ожидаемые, то это значит лишь, что модель не вполне удачна, что при ее построении были пропущены какие-то важные стороны объектов, для описания которых она была предназначена.
Поэтому, после того как было уточнено понятие функции, математики начали его изучать со всех сторон. И тут оказалось, что под введенное определение подпадают и объекты, которые математики прошлых столетий вряд ли стали бы рассматривать. Например, уже Дирихле отметил, что функцией является и соответствие, определяемое следующим правилом:
Ни одному математику XVIII в. не пришло бы в голову рассматривать такие соответствия. Они изучали лишь функции, которые описывали зависимости между физическими или геометрическими величинами. Но любое измерение конкретных величин производится с некоторой погрешностью, и потому для таких величин бессмысленно ставить вопрос, является ли их значение рациональным или иррациональным числом. Разумеется, на это можно возразить, что и значение функции
не слишком точно определено вблизи точки x = 0 — небольшая ошибка в измерении может превратить отрицательный ответ в положительный, резко изменив значение функции. По математики XVIII в. знали, что такие функции, как sgn x, являются лишь идеализированным представлением непрерывной функции, круто поднимающейся вверх на участке вблизи точки x = 0. Функция же Дирихле не годилась для самого идеализированного описания какого-либо реального процесса.
Даже добавление условия непрерывности не слишком помогало. Пользуясь обретенной свободой, математики начали строить замысловатые примеры непрерывных функций, которые противоречили всем привычным для их предшественников представлениям. Изменение, произошедшее во взглядах ученых на понятие функции в конце XIX в., Анри Пуанкаре[65] охарактеризовал следующими словами: "Некогда при нахождении новых функций имелась в виду какая-нибудь практическая цель. Теперь функции изобретают специально для того, чтобы обнаружить недостаточность рассуждений наших отцов; никакого иного вывода, кроме этого, из них извлечь нельзя".
Дальнейший ход развития математики показал, что мнение Пуанкаре было односторонним — в современной физике приходится иметь дело с функциями и линиями, обладающими весьма странными свойствами. Но путь до этих приложений был еще весьма далек, и в конце XIX в. математики с увлечением последовали свойства самых чудовищных функций, которые их предшественники поместили бы разве что в кунсткамеру; не зря новую теорию функций некоторые из математиков классического направления называли "тератологии функций" (тератология — учение об уродствах).
Математики конца XIX в. как бы положили функции под микроскоп логического анализа, в то время как их предшественники смотрели невооруженным глазом и не могли открыть тонкости "микроскопического строения" этих функций. Хотя математики XVIII в. теоретически понимали, что график функции, как и всякая линия, толщины не имеет, они, думая о функциях, воспринимали их графики как начерченные на бумаге карандашом или рейсфедером, то есть имеющие некоторую толщину. А такие линии были кусочно-монотонными, то есть их графики состояли из конечного числа кусков, на которых они либо поднимались, либо опускались. Всюду, за исключением нескольких точек, к этим графикам можно было провести касательную, любые две линии в ограниченной части плоскости имели лишь конечное число общих точек и т. д.
Математики той эпохи не подозревали, что существуют функции и линии, свойства которых совсем не похожи на свойства таких "добропорядочных" функций, как многочлены, тригонометрические, показательные функции и т. д. Но в разработанном ими математическом аппарате уже содержался динамит, который впоследствии и взорвал кажущееся благополучие. Этим динамитом оказалась теория бесконечных рядов. Первоначально такие ряды возникли, чтобы облегчить вычисление значений функций. Но потом они превратились в способ получения новых функций. И тут оказалось, что при сложении столь хороших функций, как многочлены, по мере добавления новых членов начинают выступать все более мелкие дрожания будущей бесконечной суммы, и в конце концов получается функция, совсем не похожая по своим свойствам нате, которыми занимался классический анализ. Поведение таких функций напоминало математикам-классикам сумасшедший дом. Так что и здесь понятие бесконечности, идея о возможности сложить бесконечно много слагаемых, оказало революционизирующее влияние на развитие науки.
А теперь позвольте пригласить вас на прогулку по математической кунсткамере, где собраны некоторые экспонаты, которые столь же отличаются от знакомых со школьных или вузовских времен математических образов, как ихтиозавры или какие-нибудь трицератопсы от современных животных.
Больше книг — больше знаний!
Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом
ПОЛУЧИТЬ СКИДКУ