"Лузитания".

We use cookies. Read the Privacy and Cookie Policy

После описанных выше работ, приведших к созданию новой теории функций, интерес к этой теории необычайно возрос во всем мире. В Геттингене Д. Гильберт и его ученики применяли новое понятие интеграла для изучения круга вопросов, связанных с так называемыми интегральными уравнениями, ряд интереснейших теорем доказали итальянские математики.

В XIX в. общепризнанным центром русской науки был Петербург, где в стенах Петербургской академии наук свято хранили традиции Эйлера и Д. Бернулли, где трудились замечательные русские математики М. В. Остроградский[80] и П. Л. Чебышев[81], А. А. Марков[82] и А. М. Ляпунов[83], В. А. Стеклов[84] и А. Н. Коркин[85]. Всех их объединяла искренняя любовь к исследованиям в области математического анализа и его приложений, к решению трудных конкретных проблем математики. А вот новомодные исследования по теории множеств и теории разрывных функций никакого отклика в их сердцах не находили. Слишком далекими казались им эти исследования от тех задач, которыми они занимались (хотя впоследствии полученные на этих новомодных путях результаты оказались полезными как раз во многих традиционных областях математики).

Иначе сложилось дело в древней столице России. Здесь в стенах прославленного Московского университета уже в начале XX в. стали читаться курсы по теории множеств, а в 1907 г. московский ученый И. И. Жегалкин[86] защитил магистерскую диссертацию по трансфинитным числам. Внимание этому кругу вопросов уделил и один из крупнейших московских математиков того времени Д. Ф. Егоров[87], хотя основным делом его жизни были исследования по дифференциальной геометрии. Ему удалось доказать теорему о сходимости рядов, которая стала одним из важнейших орудий во всех исследованиях по теории функций. По самое главное было в том, что он привлек к этим исследованиям своих молодых учеников и в том числе начинавшего в те годы свою научную карьеру Н. Н. Лузина.

В это время многие ученые пытались понять, как связаны "дикие" функции, открытые Дирихле и Риманом, Борелем и Лебегом, с функциями, которыми занимались предшествующие поколения ученых. Лузин доказал, что путем "исправления" разрывной функции на множестве сколь угодно малой меры из нее можно получить непрерывную функцию. А непрерывную функцию можно с любой степенью точности приблизить многочленом. Тем самым наиболее запутанно устроенные функции в некотором смысле слова сводились к наиболее изученным — многочленам.

Одновременно с этим Лузин изучал проблемы, связанные с тригонометрическими рядами,- вопросом, который традиционно интересовал специалистов по теории функций действительного переменного еще со времен самых первых работ Кантора. Здесь он также доказал ряд интереснейших теорем, выявивших тонкие механизмы, управляющие сходимостью таких рядов. Эти и многие другие доказанные Лузиным теоремы легли в основу представленной им на соискание ученой степени магистра чистой математики диссертации "Интеграл и тригонометрический ряд". Научные достоинства этой диссертации были настолько высоки, что, несмотря на сопротивление некоторых математиков классического направления, ему была присуждена сразу ученая степень доктора чистой математики — случай, весьма редкий в практике русских университетов.

Научный энтузиазм Лузина, новизна его идей, незаурядный педагогический талант привлекали к нему многих наиболее талантливых молодых математиков, большинство из которых примкнуло к нему еще на студенческой скамье. Многие из них еще до окончания университета получили крупные научные результаты. Многие годы ученые пытались доказать, что если тригонометрический ряд сходится к нулю почти всюду (то есть всюду, кроме множества нулевой меры), то все его коэффициенты равны нулю. Ко всеобщему изумлению студент Дмитрий Евгеньевич Меньшов[88] показал, что это не так. Построенный им пример был весьма замысловат, как и многие примеры, которые с таким блеском строил и сам Николай Николаевич, и его ученики. С работы Меньшова начался ряд исследований по открытой им проблематике. Сильные результаты получила в этой области Нина Карловна Бари[89], которая позднее написала прекрасную книгу о тригонометрических рядах. Рядом вопросов теории таких рядов занимался в студенческие годы Андрей Николаевич Колмогоров. Ему принадлежит удивительный пример интегрируемой по Лебегу функции, для которой соответствующий тригонометрический ряд всюду расходится.

Другое направление работ учеников Лузина было связано с исследованием строения борелевских множеств. Чтобы доказать, что любое такое множество либо счетно, либо содержит подмножество мощности континуума, Павел Сергеевич Александров придумал еще на студенческой скамье остроумнейшую конструкцию, с помощью которой можно было получить любое такое множество (в его честь ее называют теперь A-операцией). Через некоторое время другой молодой ученик Лузина, Михаил Яковлевич Суслин[90], доказал, что с помощью A-операций можно получать и некоторые множества, не являющиеся борелевскими. Возник вопрос об описании этого класса множеств, называемых теперь суслинскими. К сожалению, безвременная смерть от сыпного тифа в 1919 г. прервала исследования Суслина. Решением возникших проблем занялся сам Лузин, к которому потом примкнули Петр Сергеевич Новиков[91] и Людмила Всеволодовна Келдыш[92]. Полученные ими результаты стали основой, на которой выросло новое направление математики — дескриптивная теория множеств. Дальнейшие исследования в этом направлении гутронули самую сущность основ теории множеств, показали границы теоретико-множественного мышления. Многие из проблем, решенных в настоящее время, были поставлены в работах Лузина, причем получаемые результаты подтверждают его глубокие предвидения.

Большое внимание уделял Лузин приложению своих идей к вопросам классического анализа, в частности, к теории функций комплексного переменного.

В результате деятельности Лузина и его учеников Москва стала общепризнанным центром научных исследований в области теории функций действительного переменного. Этому не смогли помешать ни первая мировая и гражданская войны, ни интервенция, ни блокада. В Польше идеи Лузина развивал Вацлав Серпинский[93], который в годы первой мировой войны жил в Москве и общался с Лузиным.

Можно было бы назвать многих и многих учеников Лузина, большинство из которых являются славой и гордостью советской науки. Многие из них стали впоследствии действительными членами и членами-корреспондентами АН СССР, математиками с мировой известностью. Так возникла одна из самых замечательных научных школ, которая, как уже говорилось выше, получила по имени своего основателя и главы название "Лузитания". Это было сообщество молодых математиков, связанных друг с другом горячей любовью и живым бескорыстным интересом к математической науке.

Следует отметить, что из-за чрезмерной поглощенности проблемами теории множеств и функций действительного переменного лузитане иногда недооценивали важность классических направлений в математике. Но впоследствии научные интересы многих из них сдвинулись в области, лежавшие гораздо ближе к практическим задачам. Например, как уже упоминалось, А. Н. Колмогоров применил идеи лебеговой меры в теории вероятностей, а потом стал заниматься практическими приложениями этой теории. Даже такой видный представитель прикладной математики, как Михаил Алексеевич Лаврентьев[94], в молодые годы занимался тончайшими исследованиями по теории множеств.

Больше книг — больше знаний!

Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ