37 КОЛЕБАНИЯ ЦЕН И МАСШТАБНАЯ ИНВАРИАНТНОСТЬ В ЭКОНОМИКЕ

We use cookies. Read the Privacy and Cookie Policy

Называя обнаружение закономерностей в изменении цен на фондовой и товарной биржах геометрической задачей, мы шутим лишь наполовину – финансовые разделы газет полны всевозможных опусов доморощенных «геометров», более или менее правдоподобно отображающих на своих диаграммах прошлое и претендующих на то, что они способны, исходя из геометрии этих построений, предсказать будущее.

В ответ на эти претензии у нас имеется контрдовод, впервые выдвинутый Луи Башелье еще в 1900 г.: построение диаграмм и графиков в данном случае бесполезно. В наиболее резкой форме его возражение звучит следующим образом: последовательные изменения цен статистически независимы. Если сформулировать мягче, то каждая цена определяется в результате «мартингального» стохастического процесса, т.е. рынок в этом смысле «совершенен»: все, что происходило в его прошлом, полностью игнорируется. Можно выразиться еще мягче: существование отклонений допускается до тех пор, пока они не превышают операционных издержек; такие рынки называются «эффективными». Понятие эффективности по Башелье оказалось как нельзя более точным.

Вот еще одно, более конкретное, утверждение Башелье: любая конкурентоспособная цена следует в первом приближении «одномерному броуновскому движению» B(t). Здесь стоит вспомнить и о том, что столь фундаментальный для физики процесс был открыт не признанным в математическом сообществе математиком; подробнее я расскажу об этом в главе 40. К великому сожалению, когда в дело вступили реальные данные, оказалось, что B(t) представляет их весьма неудовлетворительно. В настоящей главе представлено альтернативное описание, построенное мною на основе скейлингового допущения (одного, кстати, из самых ранних, причем не только в экономике). Как выяснилось, описание это на удивление точно отражает реальное положение дел.