РАССРЕДОТОЧЕННЫЕ КЛАСТЕРЫ, ПОЛУЧАЕМЫЕ ПРИ СТВОРАЖИВАНИИ

We use cookies. Read the Privacy and Cookie Policy

Существует еще два метода построения контактных кластеров. Первый основан на створаживании и применим в случае D<2, второй использует кривые Пеано и пригоден для случая D=2. Читатели, интересующиеся перколяцией, могут пропустить этот и следующий за ним разделы.

Начнем с замены построения Коха естественным обобщением кан- торова створаживания на плоскость. В качестве иллюстрации на нижеследующем рисунке представлены пять примеров генераторов, под которыми помещены последующие этапы построения:

Во всех этих случаях предельный фрактал имеет нулевую площадь и не содержит внутренних точек. Его топология зависит от формы генератора и может быть весьма разнообразной.

В случае генератора A предтворог на каждом этапе построения представляет собой связное множество, а предельный фрактал оказывается кривой — примером может служить чрезвычайной важности конструкция (называемая ковром Серпинского), которую мы подробно рассмотрим в главе 14.

В случае генератора Д предтворог распадается на несвязные участки, максимальный линейный масштаб которых неуклонно уменьшается по мере того, как k??. Предельный фрактал представляет собой пыль, аналогичную той, что мы наблюдали в модели Фурнье (глава 9).

Генераторы Б, В и Г более интересны: здесь предтворог распадается на части, которые мы назовем предкластерами. Можно сказать, что на каждом этапе «старые» предкластеры преобразуются в более тонкие и извилистые конструкции и появляются «новые» предкластеры. Посредством тщательного выбора генераторов мы добиваемся того, что каждый новорожденный предкластер оказывается целиком заключен в одной-единственной ячейке наимельчайшей решетки предыдущего этапа построения. По контрасту с «перекрестно сосредоточенными кластерами» следующего раздела я предлагаю назвать эти кластеры «рассредоточенными». Таким образом, размерность предельных контактных кластеров имеет вид lnNc/lnb, где Nc — целое число, не превышающее количества ячеек в самом большом компоненте генератора. Значение Nc достигает своего максимума, т. е. становится равным количеству ячеек, в случае генераторов Б и В, чьи контактные кластеры представляют собой, соответственно, интервалы с Dc=1 и фрактальные деревья с Dc=ln7/ln4. Во фрактале же, построенном с помощью генератора Г, величина Nc максимума не достигает: в этом случае F-обрачные предкластеры продолжают разделяться на все более мелкие части, и в пределе мы снова получаем прямые интервалы с Dc=1.

Соотношение между диаметром и количеством и другие выводы предыдущего раздела остаются в силе и в том случае, если заменить псевдо-сосиску Минковского совокупностью ячеек со стороной b?k, частично совпадающей с каким-либо контактным кластером.