ГАРОЛЬД ЭДВИН ХЕРСТ (1880 – 1978)
Б?льшую часть своей жизни Херст – возможно, самый выдающийся нилолог всех времен, человек, получивший прозвище Абу-Нил («отец Нила») – провел в Каире в качестве гражданского служащего сначала Британской Короны, а затем египетского правительства. (См. «Кто есть кто», 1973, с. 1625, и «Кто есть кто в британской науке», 1969/1970, с. 417 – 418.)
О его юношеских годах (о которых я узнал от него самого и от миссис Маргерит Брунель Херст) стоит рассказать подробнее. Он родился в деревушке неподалеку от Лестера в семье строителя с почтенной родословной (его предки жили здесь почти три столетия), но весьма ограниченного в средствах, поэтому Гарольду в возрасте пятнадцати лет пришлось оставить школу. Из школы он вынес, в основном, знание химии, а отец обучил его плотницкому делу. После этого он устроился на работу помощником учителя младших классов в одну из школ Лестера и записался на вечерние курсы для продолжения собственного образования.
К двадцати годам он добился стипендии, которая позволила ему поступить в Оксфорд в качестве вольнослушателя. Через год он уже был полноправным студентом в недавно восстановленном Хартфорд – Колледже, специализирующимся по физике и работающим в Кларендонской лаборатории.
Поначалу из-за недостаточной математической подготовки ему приходилось нелегко, но в конце обучения, благодаря тому, что необычным кандидатом, проявлявшим незаурядные способности к практическим исследованиям, заинтересовался профессор Глейзбрук. Херст получил ко всеобщему удивлению диплом с отличием и был приглашен остаться в колледже на три года в качестве лектора и лаборанта.
В 1906 г. Херст отправился в Египет в краткосрочную командировку, которая продлилась, в конечном счете, шестьдесят два года, наиболее плодотворными из которых оказались годы, прошедшие после того, как ему исполнилось шестьдесят пять. В его первоначальные обязанности входила передача сигнала точного времени из обсерватории в каирскую крепость, в которой ровно в полдень стреляли из пушки. Однако вскоре его мыслями прочно завладел Нил – и именно исследование Нила и его бассейна принесли Херсту мировую славу. Он много путешествовал, как по реке, так и по суше – пешком с носильщиками, на велосипеде, потом на автомобиле, а в последние годы и на самолете. Первая, низкая, Асуанская плотина была построена еще в 1903 году, однако Херст понимал, насколько важно для египетской экономики обезопасить страну не только от единичных засушливых годов, но и от таких периодов, когда несколько засушливых лет следуют один за другим. Схемы сохранения воды для орошения должны быть адекватны любой ситуации – даже такой, как описанные в Ветхом Завете семь засушливых лет, в преддверии которых Иосиф призывал фараона запасать зерно. Херст одним из первых осознал необходимость постройки «Судд – эль - Аали» - высотной плотины и водохранилища в Асуане.
Вероятнее всего. Имя Херста войдет в анналы науки благодаря разработанному им статистическому методу и открытию с помощью этого метода важного эмпирического закона долгосрочной зависимости в геофизике. На первый взгляд, кажется странным, что подобными вещами мы обязаны человеку, который с детства был не в ладах с математикой и который жил и работал в таком отдалении от главных центров просвещения. Подумав еще раз, понимаешь, что возможно, именно эти обстоятельства и оказались решающими как для рождения блестящей идеи, так и для ее долголетия. Херст исследовал Нил, используя особый аналитический метод собственного изобретения, который где-нибудь в другом месте заклеймили бы как слишком узкий и специальный, но который в данных условия оказался как нельзя более подходящим. Не будучи стеснен какими бы то ни было сроками и, имея в своем распоряжении в изобилии экспериментальных данных, Херст вполне мог позволить себе сопоставить их со стандартной моделью стохастической изменчивости (белым шумом), учитывая их относительное воздействие на конструкцию высокой плотины. В результате он пришел к выражению, которое в главах 28 и 39 (с. 513) определено как R(d)/S(d).
Можно лишь вообразить себе, какое огромное количество тяжелого труда было вложено в это исследование (учитывая, что все это происходило задолго до появления в нашей жизни компьютеров) – однако значение Нила в экономике Египта трудно переоценить, во всяком случае, оно оказалось вполне достаточным, чтобы оправдать сравнительно высокие расходы (а также подавлять в зародыше попытки силой отправить Херста в отставку).
Херст был непоколебимо уверен в значимости своего открытия, даже невзирая на невозможность эту значимость объективно оценить. В 1951 и 1955 гг. Херст опубликовал две большие статьи о своем открытии, и только после этого его потенциальная важность получила признание в научных кругах.
Э. Г. Ллойд однажды писал (обозначения в цитате мои), что Херст «поставил нас в одну из тех ситуаций (оказывающих, помимо прочего, весьма благотворное влияние на теоретиков), в которых эмпирические открытия упорно не желают влезать в рамки теории. Все вышеописанные исследования сходятся к тому, что в долгосрочной перспективе значение R(d) должно возрастать пропорционально d0,5, в то время как эмпирический закон Херста, подкрепленный огромным количеством экспериментальных данных, дает рост значения R(d), пропорциональный dH, где показатель H равен приблизительно 0,7. Не остается ничего иного, как признать ошибочной либо интерпретацию теоретиками имеющихся данных, либо саму теорию; не исключено, что уместными окажутся оба признания». В похожем смысле высказывался и Феллер [146]: «Здесь перед нами стоит задача, интересная как со статистической, так и с математической точки зрения».
Моя собственная дробная броуновская модель (см. главу 28) представляет собой прямой отклик на обнаруженный Херстом феномен, однако на этом наша история не заканчивается. Не хочется придираться, но авторы патетических замечаний, приведенных в предыдущем абзаце, основываются (уверен, неумышленно) на неверном понимании утверждений Херста. Ллойд почему-то не обратил внимание на то, что R делится на S, а Феллер, зная о работе Херста из устных сообщений третьих лиц (по его собственному признанию), просто не понял, что деление на S вообще производится. Упомянутая статья Феллера, к счастью, от этого не пострадала, а о важности деления на S можно прочесть в [408] и [384].
Этот пример еще раз показывает, что когда результат является по-настоящему неожиданным, его очень трудно понять и принять, - трудно даже тому, кто расположен слушать.